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PREFACE

AN

. . N
Tms little volume contains the substance of lectures by

whick I have been accustomed to introduce ths} mbre
advanced of my students to a course in modern, {edonomic
theory. I could find no text-book sufficiently Urief for my
purpose, ner one which distribated the, Q{»phaslb in the
desired manner. My object, however\m preparing my
notes for publication has not th‘}l El:mcxpally to provide a
book for classtoom use. Tt must be' admitted that very few
teachers of Fconomics as yer Hesire to address their stu-
dents in the mathematlcal‘tongue "I have had in mind not
50 much the classroonr\as the study. Teachers and students
ahke, however m\l‘e ‘they care about the mathematical
medium for their own ideas, are growing to feel the need of
it in ordenté’uiiderstand the ideas of others. I have fre-
quently, j:‘éeéived inquiries, as doubiless have other teachers,
for émé ook which would enable a person without special

ma’\ﬁemalxcal training or aptitude to understand the works

\Uf Jevons, Walras, Marshall, or Pareto, or the mathematical

“ articles constantly appearing in the Economic SJournal, the

Journal of the Royal Statistical Sociely, the Giornale degli
Feonomisti, and elsewhere. It is such a book that T have

tried to write,



i . PREFACE

The immediate occasion for its publication is the appear-
ance in English of Cournot's Priucipes mathématigues de la
théerie des richesses, in Professor Ashley’s series of “ Eco-
nomic Classics.” The “ non-mathematical” reader cén\
only expect to understand the general trend of reasoning dn.”
this masterly little memoir. If he finds it as stimulatirig hs
most readers have, he will want to comprehend itsmn’c';tﬁation
and- processes in detail. S /

I have tried in some measure to meet the\vatying needs
of '_diﬂ'erent readers by'us_ing' two sorts oxf type.  If desired,
most of the fine print may be omittedfof first reading, and
all on second. The reader is, howeyer, advised not to pass
over all of the examples. . N 3

Although intended prirz)aﬁlg; for economic students, the
book is equally adapted tfo:'th;: use of those who wish a short
course in “ The Calculls ” as a matter of general education.
I therefore ventyse’ ?he hope that teachers of mathematics
miy find it u’sé‘u\r as a text-book in courses planned espe-

cially for thevi¥general student.” I have long been of the
opiﬁiqn:tih?zt the fundamental conceptions and processes of
the dnfinitesimal Calculus are of greater educational value
than"those of Analytical Geometry or Trigonemetry, which
N\ .f;at present find a conspicuous place in our school and college
curricula. Moreover, they are almost as easily learned, and

far less easily forgotten.

: _ IRVING FISHER.
NEw HavEN, September, 18g7. -



PREFACE TO THE THIRD BQ}TION
\\,

In the present edition have been /3\ cérporated several
changes and additions originally pr‘%réd for the German
translation of 1904 and for a ]ag\&n,ese translation in prep-
aration. . \\;

A preliminary statemenquf" the concepts of limits and
several new examples @e also been inserted.

<O IRVING FISHER.
Wovember, 1 SQ
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xii : INTRODUCTION

Application to Infinite Series.— In a converging infinite
series, the sum of each successive term and those preceding
approaches a magnitude understood to be designated by
the series. This magnitude is called the ¢ sum’ of the series.

Thus, thie repeating decimal .666 -,

or e — e
3 2T I8 + 10-1+ , !
means a series of successive magniindes, viz.: .\

{a) —ES- > which is less than 3. SO

W

¢ ) P —!- o which is less than ,.bll.f; more nearly approxi-

Ne/

mates £ than (a). ' Q N
L 6.6 \
( ) + gt o whlch \is less than 3 2, but more nearly

approxnnates % than k)
(@) — 4 — Q 6 which i
) IB 2\103—[——13—4, which is less than £, but more
nearly applid?glﬁmates % than (o).
Thqs,ias‘ the number of terms of the series is increased,
§tnt of the terms remains always less than 2, but approx-
Jtnates ultimately as nearly  as may he desired, 7.e. converges
< vtowards 2. We therefore, by convention, speak of £ as the
fsum,’ or limit, of this infinite series,

THEOREMS.

1. The Hmit of the sum of two different variables (which
approach limils) is the sum of the limits of those variables.

N\
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2. The Emit of the difference of two different variables
(wwhich agproach limits) is the Uifference of the limils of those

variables.
3. The limit of the product of twe different vartables

$

(which approach limits) is the product of the limils of those \(’,\,’}’

periables.
4 The Lmit of the quotieni of two different m;{“}&
(which approach hmiks) is the quotient of the stm'\j/ those

pariables. N\
N
<§\§:> .



INFINITESIMAL CALCULUS

'CHAPTER 1 o

THE GENERAL METHOD OF DIFFERENIJATION
1. The Infinitesimal Caleulus treats of tilie ultimate ratios
of vanishing quantities.  This deﬁnmoxr ‘however, ¢an only.
become mtelllglble after some aptua.l acquaintance w1th
“ultimate ratios.” R
2. The conception of a, hrmtmg or ultimate ratio is funda-
mental in many famihay*r}latlons It is impossible, without
it, to obtain a clear b\f}tlon of what is the zelocizy of a body
at an instant. The aperage velocity of the body during a
period of time @iy readily be defined as the quotient of the
space trave»:gt:d during that period divided by the time of
traver mg\;t If a steamer crosses the Atlantic (3000 miles)
in 6 g , we may say that the everage speed Is 3000 =6,
ox §do, miles per day. But this does not tell us the speed at
v"hous points in the voyage, under head winds, storms, or
\ i)ther conditions, favorable or unfavorable. What, for
instance, was the speed at noon of the third day out? We
may cbtain a first approximation 'to the desived result by
taking the average speed for a short time after the given
instant ; that is, taking the ratio of the distance traversed
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during (say) the following hour to the time of traversing it,
which is 4 of a day. If this distance be 20 miles, we abtain
20 - g, or 480 miles per day, as the average speed drring
that kour. TFor a second approximation we take a minute
instead of an hour ; for a third, a second instead of a mimpte,
and so on. The ratio of the space traversed to the tinfe bt
traversing it becomes closer and closer to the trug speed.
Though both the time and space approach zeré s limit,
their rafie does not. The limit which this m.@ :,{L’pproach es,
or the #/timate ratio of the distance traverséd)to the time of
traversing it when both distance and ti[@,vanish, is the pre-
cise speed af the instant. 20 M

7

RS

X
"

3. Let us apply this mgthéd’ of obtaining velocity to
bodies falling in a vacuum.{ We know from experience that
the distance fallen cqp’d}a{ Yixteen times the square of the
time of falling, 7.e. s =% #% where 5 is the distance fallen
from rest (measured in feet), dnd £ is the time of falling (in
seconds). Cons;:i(%r the body at some particular instant, /
being the, tifag to this particular point and s the distance.
Suppose. '\i'e wait until the time has increased by a small
incrémént Af, during which the body increases its distance
frqnithe starting-point, s, by the small increment As.  Since
fhé ‘above formula holds true of a# points, it holds true now,

~.“\ hen the time is £+ A/ and the distance is s+ As. That is,

sS4 As =16+ A7

This gives

. S+ As=16+ 32¢ - Ar4 16{AF
But 5 =16#%,
Subtracting, we have )

As= 327+ Ar4 16(AML
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whence i‘; i=g2f4 16AL (1)

This is the average velocity during the groall interval Az

Thus, if A7 = % sccond and £ he § seconds, the average speed of the
body during that half second (viz., the one beginning § seconds from
rest) is 32X 5+ [6X 4, or 168 fect per second.  If we take 1y of asec-
ond instead of }, webave 32 X §+ 16 X 1 or 1601 feet per second

Thus, by takmg Af smaller and smaller, we obtam .the'.

average veloc1ty — for a smaller and smaller 1nterv;d of tlmc

A\
immediately after the completion of the fifth sceond. The

Zmif# which é— approaches, as Af approaﬁhes zero as Ms

-\
limit, is called the velocity at the Very Fhstant of completing

the fifth second. W W
Iis value is exactly 160, as 1s‘evrdent from the right-hand

mernber of equation (1}, Whlch’ approaches as its limit (as ¢
is 5 and A# approaches zero},
32 X5 416 X o, or 150.
In general, to\gkprcss the Timit of both sides of equation
(1) when A? approacheb zero, we write
N/
x\"
}k The student will observe that, as &7 approaches zero,
A‘r\.ﬂso approaches zero, since a body eannot pass over any

lim as_ 32 4
Af

P dlstance in no time. He must be warned, however, against

S
) Y

\ 3

expressing the limit of 'Et 'Dy o which, of course, is quite

indeterminate.
But in spite of the fact that the ratic of these Zmils of As
and A#is indeterminate, the Zmt! of the rafio of As and Al

\.
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- may be entirely determinate. It is only with this latter con-

ception, viz: the limit of ﬂ, or lim E, that the student hag
: . Af AL
to deal.
The limit of the ratio of the vanishing quantities As and

&, or lim i‘;—;, is called the  derimative ” of 5 with respect tof

£\
¢ ; because, from s = ¥6 2 we derrve lim %j: 322 g &

In fact, we may speak of either member of the Jajtté;‘ of
these two equations as the derpative of either member of the
former equation. Forinstance, 32 ¢ is the denlvative of 16 £2

5. Other names and notations are alspyused. Thus in-
stead of lim %‘—; it is usual to employ ght;\gﬁorter symbol d?;

In this expression @5 and Z# are caﬂeﬂ.éﬁﬁmﬁﬂa{f of s and 2,
just as As and A7 are called incselbnts of s and £ But they
are nofzeros. They have no.ﬂ'ejfinite value individually. We
may select any value we pledse for one of them. But when
this one is fixed, the othénis also, since the two must be kept

in a ratio equal to }{iﬁ %; We say therefore that the differ-

entials &5 and 4 aze any two quantities which bear to each
other the ratiovwhich is the limit of the ratio between Ags
and Az 'Q \ *

o s Ag & . . .
Othef Mames for im 29 or —, besides * derivative,” are
S M Ar T gF ’
“ differential quotient” and « differential coefficient.”

,f;”ﬁ- In the particular case considered above, the differ-

(Jential quotient is a velocity and may be denoted by =
~ Equation (2) thus becomes* - 32z

# If distance be measured in centimetres instead of in feet, we should
have 2 =980 4 and'in general w= £7,

where ¢ 1s 2 constant depending
for its nnmerical value on the units che

sen for measuring space and time.

&
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Velocity at 2 point may now be defined "as 2k wltimate
ratio of the space traversed just after passing the point o the
time of traversing if when the space and time appwéz:}z zere
as fmit

7. EXAMPLES.

1. What is the velocity of a body which has fallen 10 seconds ¥
\ W

100 seconds ? 14 seconds ? A
2. What is the velocity of a body which has fallen 16 feet P.~,f h
LITNT.— First find how mapy seconds it has fallen by usméu\: 1622
5. \What is the velocity of & body which has fallen GpMeSt 2 4 feet?

I foot? 2 feet? :.\\j
4 It heing known that a hady, falling not.front’ rest, but with an

initial velocity of 5 feet per second, obeys e, Jaw

5= iét%—f—’s"{, W (1)

what will be its velocity at the end of ?ny time 27
HinT. — Let ¢ receive an incgaﬁ{'é;a’tvat, czusing ¢ to increase by As,

so that 7+ a5 = 168 +’ ADE 4+ 52 + Af) (2)

Subtract (1) from (2), gli\'fi& by Af and then reduce A7 and As to zero.

X\ ' Am.limi—j:323‘+5.

N

5. What wi{ﬁ;é”the velocity at the end of 10 seconds? At the end

of 69 feet? § :;
$
6. W“being known that a body falling with an initial velocity of =
obeya hE law s = §g¢2 + w2, what will be its velocity at the end of
timevy? When #:= 37

e
D

8. When one quantity depends upon another, the first is
said to be a function of the second. A change in the second
is in general accompanted &y a change in the first. In each
case the limits, within which the fupction relation exists,
should be specified.

ne.Y
\
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Thus the distance a body falls from rest is a function of the time of
falling, for how far the body falls depends on how long it has fallen;
the demand for an article is a fnnction of its price, for if the price
changes the demand changes; if 3 = 22 thea y is a function of &, for
a variation in the magnitude of & necessitates also a variation in the
magnitude of . A
RS

9. When one quantity is a function of another, the fagter
is called the independent variable, and the formeQ ‘the oo
pendent variadle. :

The distinction between the independent anﬁ\he depend.
ent variable is only for convenience of €xpression. The
two may be interchanged. "% \d

Thuos, as the distance of a falling bgdg\from the starting-point
changes, there is also a change in theftin¥ it has taken. Hence we
may say that “time of falling” is a fydetion of * distance fallen.”  Simi-
latly price may be regarded as a fonction of demand, Again, y = &2
may be written & = vy, thus makmg x a function of 3. The iidea of
functional dependence is tlm:rféfure quite different from that of cawsal
dependence, Functionaldependence is a matual eefation,

In the example "oNalling bodies ¢ was a function of # and
what we accomplished was to find the differential quotient
or derivative®ef that function. The derivative in this case
was a #¢/4etfy. In general the process of finding the differ-
entml{luotlent of any given function is called i ifferentiation,
and\is’ the subject matter of the Diferential Caleubns, one

the two branches into which the Infinitesimal Calculus is

Ay divided.  The Differential Caleutus wilt occupy us in the
\ " first five chapters of this book

To. A second important application of the idea of a differ-
ential quotient of a function is to the fangential direction of a
curve at any point on it. The Caleulus enables us to conceive
in the most general manner of a tangent to a curve, The
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student should observe that the usual definition of a tangent
to a circle will not apply to any and all curves. A straight
line may have only one point in common with a curve and

yet cut it and not be tangent, ~

11. Let &5 be a curve whose equation is Ko\
ymrhsa—2 o
‘I'hat is, for @ny point 2 upon it, the “ordinate,” y (or dis’}:'/
tance, £4, from that point to thfl.; {Porizontal axis), is ;e’{sia:ted'

XN\
N \ ¥4

2 -
\*”\;h Fis. =t

O . :
t(}:ﬂ;l¥ “ghscissa,” x (or distance, 04, from the vertical axis),
s"l}:ﬁ:he manner expressed by (1). P4 isa function of 04 ;
Ve the height, 24, of any poiot £ on the curve depends

’ upon its distance, OA, from the vertical axis.

What is the direction of the curve at the point £#? The
direction from the point 2 to another point F'is the diree-
tion of the secant line ¢'2P!. 'The point P' has for abscissa,
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x4+ Az, and for ordinate, y + Ay. Since the rélation (1}
holds true of all points on the curve, it holds true of Fap

Hence y+&y= 1 +5(x 4 Ax) — {x -+ Ax)ﬂ
or y+Ay=1—i—5x+5Ax—xz—zxﬁx—(&x)i.

Subtracting y=1+52x—2 : (\J
. N\
we have Ay=5Axr—zxAx— (Ax)%, A
whence Ay =5 —gx— Ax. " \
Ax \

We may pause here a moment fo see\what this result

Ay PC 13 1 s f N -

means. < or = is the slope of L\'thne QAP That
x

is, it is the rate at which a point_ mgvmg from Q' toward &
rises in propottion to its horizofital progress. It is the same
sort of magnitude as that I.(:fal’l’&d to as the “grade” of an
uphill road which mes."‘so many feet o the mile (hori-

zontally).” If %:;m ALY Q' PP rises one foot in every tcn
1o

. +8 ) . . . -
horizontally. {Qﬁ:‘“ slope” of a line shows its direction.
» Ly
The equahcm vind B shows that the “ slope” of the
secant line~ Q’PP‘ is to be fmmd by taking § and subtracting, frst,
two, tm’}s the number of units in (4 and then the rumber of units
’1\/‘( For instance, if 04 =2 and 48 =1, thea

R\ ay
"\:‘:. ) ——5—2><2—i i;

i.e. the secant slopes I fout up for every 2 feet sidewise.
12. But we have not yet reached the tangent at 2. Let

_the peint 7' be gradually shifted along the curve toward P
until it ultimately coincides. The secant Q'P' will gradually
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change its direction and approach a limiting pesition Q2
"This Zmiiting position we call the tangent. Ifs slopzis -

-(ll =g§—2a
dx
o K2
Thus, if x(ie. 04) i 2, ;{Z: L. That is, QP is inclined at 45° {
# x £ '\. ’
If x is 4, ‘;’l =—3; #.e the curve slopes dewn, not up. s W
% "\
<N

Ve \ud
Fig. 2. — A, positive slope; B, zero slope; C,‘medative slope.
X )Y

ExavrLES. £ .
1. What is the slope of the tangent 40,the above curve at the point
whose abscissa is*1? 0?7 23? What¥does the answer to the Jast

tean? 37 What docs this meARd 6? —1?

8. Derive the formula for the glope of the tangent to the curve
=1 + &+ x2 &
¥ RS

13. To constr.c{ir'icangent at B, all we need to do is to
draw a line thromgh P with the required slope. Thus, if we
wish the tangent to the point whose abscissa is 1, we find
from the,abdve formula that its slope is 3. We therefore
lay off-a horizontal line ZA (Fig. 1) equal to any lengthax,
am}%&ﬁ‘s extremity erect a vertical, 4V, equal to three times
asyiuch, or @y, Draw ZNV; this has the required direction.

,.,\:'zflvlle:: through 2 draw a line parallel to LAN. This will be
\ J the tangent.

We wmay also call PC, dx and £7'C, dy; for, by Sec. 5, 4%
and dy are simply any two magnitudes having a ratio equal
to the limit of iji when Ax approaches zero as its limit.

The problem of drawing a tangent and caleulating its slope was one
of the chief problems which gave rise to the discovery of the Calculus.
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14. It is evident that we could approach I from the left as well
as [rom the right. We should, however, reach the same limiting post-
tion unless there shoull be an angle in the curve at the point /* as in
Fig. 3. In this case, the progressive (L&) and regressive (///7) tan-
gents do not coincide.

Buch peculiar points are not considered in tlﬁs\ﬁttle treatise,  All
the functions are such that, (or the values offhe independent variable
which are considerad, the progressive ahd\gegressive derivatives are
identical.  The carves considered ares a1l~ #smooth,” that is, have no
angles ur sudden changes in duet,‘h;m" In many applications ol the
Caleolus, such as to statistical ar! Reeomomic diagrams, il 13 often con-
venient first to smooth out I.he gurves considered,  When we want (o
see from a plot of the pop.uiatmn what i5 Lhe general rate of increase,
we draw a tangent not 1§ the plot of the acfual figures, but to a smooth
crerve coinciding as naad} as possible with the plot.

The student wﬂk\uc able to satisfy himself in ¢very particular case
to be considered that the progressive and regressive derivatives are
identical.,, 7™ )

Thus, f6¥=167/? in section 3, let £ receive a decrement A'F, cansing
s to hdvaa decrement a's. “Then

N\ .
) §— Al = 16(f— a'fHl,
\Exp'mdmg, subtracting, and dividing as lefore, we obtain
Als
St =3af— 10 A%,
at o
which reduces at the limit to
T
%‘: = 324, as before.

Indeed, we assume in general, that it is physically impossible for
a body to change its velocity per seifwm. Hence the definition of
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velocity given in section 6 is cquivalent to the following alternative
deiinition : the ultimate ratio of the space traversed just fefore reaching
the poiot to the time of traversing it when the space aud time ap-
proach zero as imit,

We shall, therelore, henceforth treat only of functions whose deriva-
tives are continuous and which are themselves conlinuous, within the
Luits considerad, that is, hich in changing from vme value to another,
pass continuousky through all intermediate values.

15. We have seen that the conception of an ultimate, fatia
clears up the notion of velocity in mechanics and tapgeitial
slope in geometry. It is also applicable to wmuéh) clse in
both these sciepces as well as in ail mathematical sciences.
Momentum, acceleration, force, horsepower;\}ié'nsity, cirva-
ture, marginal utility, marginal cost, alsticity of demand,
birth rate, “force of mortality,” arc.all:eﬁamples.

'The conception of an ultimate citio or of the derivative of
a function is not dependent, hos&gfvér, on any special applica-
tion, It is purely an abstrzu:'tf’adea of number.

6. Thus let tw\roxﬁ‘rg\ables x and y fulfil the equation
\\ N/ .
y=%

where # is 47 constant and a positive integer. We may
obtain th@dilferential quotient gl for any particular value
of xpds Jollows : *

Ket'x receive an increment &x producing an increment of

."Q'; fdenoted by Ay, Then, by the binomial theorem,
m\.J .

S

34 Ay = (o + ox),
="+ nx® 'dx 4+ mz:-ﬁ At (Ax)
ek (A3)
= o 4 nxm T Ax 4 AN (e

2N



1z INFINITESIMAL (ALCULUS

Subtracting ¥ =a"
we have Ay = rzx"“Ax+(Ax)5(...),
Whence &:ﬂx"'l-i—Ax (),

Ax
where the parenthesis is exiidently a finite quantity and re-
mains finite after Ax becomes zero, Hence, when Atx:\
becomes zero, the term Ax (-..) becomes zero, a.nd Qe
equatlon becomes, ; .

Uy | )
D e &

17. This is the first and most important $pacific formuta
which we have reached for the d::rwatwe Qfoa function. [t
states that, to obtain the derivative af\.yq"’ a power of x, we
need only reduce the exponent hy~ bty and use the old
exponent for coefficient. o\

Thus the derivative of 23 is 3 22, ’W‘hcn x passes throngh the value
2, 32% becomes 1z2; that is, ¥, on x&, is increasing 12 times as fast as .,

fy
a is the rate af which y mgrea.ses compared with the rate we make x

increase. If y denotes t{% distance of 2 moving body from the start-
ing-point, and x d%&:ﬁ Ahe time it has maoved, L4 = O 3%, expresses

its zrefanfy Again, ¥ & and p are the “courdmates T (ie the “ab-
scissa” and Forditate ) of a curve whose equation is ¥ = % then
322 isits sfa;!s 4t the point whose abscissa is .

Althmgh 1t is logically unnecessary, it is practically helpful to pict-
ure they differential quotient as a possible welocdfy or a possible sdope,
Cfth#’two independent discoverers of the Caleulus, Newton seemed
r.o have employed the former tmage, and Leibnitz the latter, New-
.ton s tern for a differential quotient was  Buxjon.™

ExaMpLes. — 1. Find the derivatives of 212 x5 42y What is the
meanmg of the answer to the last ?

2. How many times as fast does ¥ increase as & when y = x* and
xis2?

3. How fast does 2% increase compared with x when = is — 17
What does the negative answer mean 7
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18. The process employed in this chapter for obtaining
the derivative of a function is called the “ general method of
differentiation.”” It consists (1) in giving to the independent
variable a small increment, thus causing another small incre-
ment* in the dependent variable or function ; (2) in writing
the relation between the two variables first without and then,
with these Increments and subtracting the first from thaw
second ; (3) in dividing through by the increment of tife -

ql

dependent variable ; {4) in passing over from } ,te\

I'his process should be thoroughly mastered by the
student, for it contains, in embryo, the wh.ulq\ef the Inﬁm-
testmal Calculus. \‘

He will observe that the order of steps(3) and (4) cannot
be im’erted without producing the,]::ar’fen result o = o.

‘ X
"

1¢. Nevertheless, we canvam‘zc‘zpafe the result of step {4)
without changing from the fotm of (2). Thus, the equation

—-:{5%\1— 2x+3at+5a°

yields at step (2) :\\ ‘

Ar=z Ax+Q3é Xx+3 (Ax)* 415 2* Ax+ 15 2 (Ax)i 5 (Ax)®
= (e A 4 1559 8+ (3 + 15 )89+ 5 (49

It\gm readlly be foreseen that step (3) (Z.e. dividing by
Axiwill remove the first Ax, and reduce the exponents of
'{?le'powers of Ax by one, and that therefore when step (4)
‘5 performed (7. reducing Ax to zero), all terms beyond
the first will disappear, leaving 24+6x4 154° as the

derivative, Now it is clear that this result could have been
anticipated simply by negleckng the terms involving potwers

* Decrements may always be regarded as negative increments,
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af Ax higher than the first, and taking the coefficient of the
first power as the required derivative.

Though this process of neglecting certain terms at step
(2) is a mere anticipation of what must necessarily happen
at step (4), it may be shown to be perfectly natural 77z ~ize,
If Ax be less than one, (Ax)* will be less than ax, and
{(Ax)" less than (Ax)%, etc. By making Ax smaller’a'.na
smaller, the higher powers (Ax)%, (Ax), etc., can bemidide
indefinitely small, not only absolutely, but iz fm%}b.}rr:f;m

" with Ax. The higher powers of Ax thus growing}negligible
relatively to Ax, the terms in which those pdivers oceur as
factors wust also grow negligible (providedyOf course, the
other factor composing each such termi\does not approach
infinity as limit). P \%

Thus, i A is 1y, (Ax)?in robyer i (A%)? only radyppe Con
sequently in the equation oW
Ay = (246 + 15288+ (34 1523(Ax) 4 5(ArYY,

we can, by reducing Az stfficlently, make ihe terms beyond the first

as small as we please fopared wizh the firss, no matter what he the
value of x, so loné\h it is finite, thus keeping the parentheses finite,

For instance, if #\be 2, we have Ay = jada 4 33(Ax)2 + 5(Ax)3,
Then, if| \

Apdeor, this becomes

=001, it becomes

@X = 74 + 0033 4+ 000,005,
e
j:'; Ay = 074 + 000,033 + 000,000,005,
NI Ar= 000,001, it becomes >
Ay = 000,074 + 000,000,000,033 + 000,000,000,000, 000,005,
and the smaller we make Ax, the more negligible become the terms

involving (Ax)¢ and {Ax)3, until at the Fmit they become, not simply
negligible “ for practical purposes,” but absolutely negligible,
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The anticipatory neglect of terms involving powers of dx
higher than the first often saves a great deal of labor.
EXAMPLES.

1. Find 2 when y = 5.
P

- &
2. Find 2 when y =47 + 8% {
gy Y + +4 }../
ind @ w = 100 \;3
3. Iind e when y = 10 2%, '3»\§
4. Find —Z when y = aa™ 4 fa7, m and ” bcm@&stant and
integral. Q’}i{ Vot farn—L
5. If x, the side of 2 square, has an incremeﬁi{“} what will be the
increment of the arca of the square ? \{‘
6. In the function ¥y = 3424 2, ﬁnd tge value of & when y in-
creases 20 times as fast as 0\% Ans, x =3

Differentiate the following functlphs‘.:

o y=3a5 + e :g‘
8 y=a4x5— 72 235 z2a Ans, zoat —212% 4
9. y=35—(a+ PN
16. y:(a-;-.r)s(\ﬁgﬂ.' Ans. 3B+ 483 + 348
pS
o\
O
t;\wl
¢ 4
Sl
A\
AN
4
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20. If we differentiate ) ,'{\\*
' y=z2x ;.«’f;\ '
by the general method, we obt?{&""
. QQ \Q‘
g.’h‘{i (1)

Clearing this equatio@f fractions, we have

g\«'\\_” dy= 12 dx. O (2)

This last "gai’gation is simply another form of the first, and
more cofvenient for some purposes.

L D
y ;Xbo/
Q’i}"&’y = 6.xdx is a transformation af
'si\ L4 =6ux,
W\ ax
N
” which in turn means lim i—i =6

6 x s a differentinl guotient and 6 xdx i a differential.

These conceptions are strictly correlative. 10 obtain the differen-
tial quotient from the differential, we simply divide by dx ; to obtain
the reverse, we multiply by &,
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Exsmroes,

1. What is the differential of x5?

2. The differential quotients of a7, 210, 447
- A

21. To express the mere fact that y is a function of x, :~\

without specifying exactly wha# function, it is customary- to \'\

use the letlers &, f, ¢, ¢ (and rarely others) followed by o'\

in & parenthesis, They may be regarded simply as abbreénzi*

tions of the word * function,” Thus '\'\."

W

¥ = Function of
is abbreviated to y=F(x). ,:f\\"
&
It is to be observed that the letters F, 5 g&r,ig# etc,, do not repre-
sent quantities ke # and 3, bug, like A andu& represent operalions
on (uantilies, T}

R
N
“
™

22. The general expresswn for a function, such as $(x),
is often used to express, within brief COmpass, any special
function. Thus if we hatesthe equation

O

s — 6L

s\tJL Sx +2__x3 ’
x'\": I+x2 4.%‘{

we mwj\shorten this to y= qb(x) by denoting the clumsy
right ’h}nd member by ¢(x).
‘Agam if we have a definite curve, such as a statistical
\'"\dlagram whose cobrdinates we call x and y, we may use

y=f(z)

1o express the' fact that ¥ is related to & in the particular
manner delineated by the curve.
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23. The differential quotient, or derivative of a funciion
of x, is itself a function of .
To denote the differential quotient of

(),
we use the expression  #'(x). \’ \)
Thus let @{x) stand for £, . ‘s.)
Then ¢'(x) stands for 6.5 ( 3{
The differential of F(x) is therefore exp;esset(by
F(x) de. \%
.\\,
24. Another method of expressmg\the differential quo-
tient of
£, 1

connects it with the general mgthod of differentiation. Thus,
if x receives an increment &x, F{x} will become

F (x + Ax).
This differs from 1t§~Q}rglna] value #(x) by
“'F(x + Ax) — Fix).
The ratiog 0{ this increment of the function to the incre-
tent Ax; ,pi; ‘the independent variable a, is
.‘};“’ Flx+ Flx 4 Ax)— F(x)
\”, Ax

‘\ Its llmlt viz. lim &+ Ax)— F(x)
~{‘~ Ax

* s the differential quotient of F(x); Ze.is
FHz).

The above process is identical with the general method of differen-
tiation, though we have expressed it without

the use of . We might
have proceeded as follows:
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Put 7(x) equal to y so that
¥ = Fx).
Subiract this from »+ Ay = Flx 4 Ax),

and divide by Ax, giving

N\
,ﬁ_y__F(x—Fﬁx)—F(x)
Ax ™~ Ax ’ ¢ ‘\\.
or, at the limit ..,’\\..“,
T _ 7'\
‘f_y — lim Fix + .ﬂ’) F(x). CL @
753 Ax .
2\ Y
<

25. Yet one more uotation should be fa iif;uized.
Rather it is a new application of an old ehg.)" Instead

of writing dJi, we may replace y in thi&expression by
. @x 7238 .
F(x), so that it reads AV
ALF=)] NN
dx N

L N

The student will do well now gqf telcase his mind from y as any
necessary element in the analyfés}“.}"t is to be regarded merely as a
farther abbreviation of F{x). ‘::::

4{x)y rather than y is to.{)e thought of as primarily the function of
{x), Thus, in onr introdeetory example, instead of denoting space by
s and writing s = 1Q{: e need only say if # denotes time, the function
of £ 164%, will denotevspace.

So also if .-r,;}é;@tes the ahscissa of a curve, F{x) instead of ¥ de-
notes its ordi«faté.

Thus,,:\;“" f‘(“ﬂ is 2%,
N\ dx
ot \“' @ {a%) = 2 xdx.
O\
R\
N . .
£\ EXAMPLES, — 4 E;;) =? d{xt)="7

O _
N We thus have five methods of denoting the differential
quetient of ¥, or its equal #(x) ; viz.:
LAy ay d[F@)] g _ F(x4Ax) - F(x)
llm Q’ ;z’.aé’ '—"w—"ix—, (x)’ lim Ax
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ﬁﬁ. If a function of « is the sum of several functions of

x, t.e. if
F&) =A@ +@) + -

. then, since this equation holds true of all values of x, it

holds true when x becomes x + Ax, so that ) K¢ N

Fla+a0)=Alx+A) Hh@E+A7) Lo O
Sbtracting the upper equation from the lower, and divid-

ing by Ax, we obtain - ...\ %
F (—’f +Ax) — F(x) _ Alx+Ax) —f 53
Ax Ax \\ /
G Ax)\—fz @)
{ ’Ax

Now let Ax approach zero‘.,ﬁsifits limit, Then for the
limits of the terms in the aBove equation, we have:

o 2+ 89— F Q) Y ACES A9 A 4 ete,

or .\o\’f?.'(x) =f@) + A @)+, ete.

That is, #ie &iffrrential gyotiém‘ of the sum of seperal func-
Lons is hesum of the differential quotients of those functions.
The sgfnﬁe.}easoning establishes the corresponding thecrem
fo\th\g‘dzfereme of functions.

A~

#

&L
), VThus the differential quotient of x2 4 48 is 24 345,
% Sometimes the theorem is used in the differential form

Fa)de = f (2 + ()t o
or again xyde = [ A a) + A (x) + ] 22,
ExaMPLES. — Find the differential quotient of :

L x4t TR A, C 8 —aTaln,
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27. Tf a function of x is the sum of another function of
x and 2 constant quantity, Ze. if

F@=f@+& @
where & is a constant, then ) QR
P@&=f@, QLD

the same result as if X were not present in {1} at all. /:‘I{h\e”'
proof of (2) is simple, When x becomes x4 Ax, £T) be- -
comes SV

Fla+axy=fls+a0 + K. 0" (@

When we subtract (1) from (1}, & disap,pgﬁs: entirely, and
we have, after dividing by Ax, ~\ -

O

Pla + ax) — F(x) _ fe¥hs) ~f(@)
Ax N Ax |

which reduces at the limitgt'é,‘(’z). The same result would
be obtained if in (1) & mere preceded by the minus instead
of the plus sign. .\

Hence, to ob mfhé derivative of the sum (or difference)
of a series of farms, some of which are constants, we simply
take the s.urﬁﬁ(‘(fr difference) of the derivatives of all the
terms w ic:h\ are functions of x, ignoring those which are

constgni:.
\o/, o
"\‘:';’b\gain, the derivative of
~\\/ BoAfrta—b-8is gat—ga’ L

The foregoing result is sometimes expressed by regarding
all the terms, even the constants, as functions of &, and
saying that the derivative of a constant term is zero.
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ExaMpLES, — Find the differential quotient of:
1 4%z 2. a4 3+at 8 A eabta
4. Prove last by general method of differentiation,

28, If a function of x is the product of & constant by

waother function of x, fe. if Ke
Flx)= K¢ (x), Re
then Fllx)= K¢'(x}); R N N (2)

that is, #te derivative of the pmdud of a .«:amz‘arzt\éy a fme:-
tion is the product of the constant by the Herpative af e
JSunction, N

PROGF. — When x becomes x -+ Ax,f\x) becomes
Fla+ Ax) = Kt Ax) ()
Subtracting {x} from {1)' a,nd dmdlng by Ax, we have
Flx + Axy— F@;K¢ (x + Ax) — Ko (x)
Ax < Ax
, g"‘z\ qu(x + Ax) — (x)

v Ax
or at the limity, F{x) = K'().

Comu‘.;ﬁ&.——The derivative of mx™ is m times the de-
rivati{‘é}:'f‘x“, as given in § 16, Hence, it is mn a*!. This
re&il.t/is $0 often used that it should be carefully memorized.
'W en # is 1, the derivative is simply 2,  (Show this directly,

\ ,by §18.)
ExaMrLES. — Differentiate
545 247, 4x%, 3x, 148
xﬁ__ -\ig..'i_ xB(I +_\/§__)
3 5 1—-Vaz
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29. If a function of x is the product of two functions of
x, fe. I F(x) = ¢p{x) ¢ {x), then
Flx 4 Ax) = ¢ {x + Ax) (v + Ax).
Subtracting and dividing by Ax, we have
Flx+Ax) — Fx) _d(x+ A0yl +Ax) — ¢»(x)¢(x) Oy
Ax Ax o

N/

The right member may be changed in form w1th01ﬁ: srsf
fering any change in value by adding and SL\'I;l'Ei.Ctlng

¢ (£} x4+ Ax) in its numerator, giving AS)

$(2+ Ax (x4 Ax) — g (x)P (2} —¢(x)¢(x+axa»3~$(x)w(x+:sx)
N
Grouping the terms according 1 \common factors, we
have ' u

[pix+ Ax) hlxy]p(x+ Ax’} *I- ¢(x)|:l,b(x +Ax)— ':f"(x)]
~ A:r

ar

LIRS A:z - (x\):{ ,,{HA o +w(x+Ax) v 4,
Taking thesé Ibrms in order, we see that the
PN
’\’hmlt of 4——— $(x + Ax) — () is ¢'(x),
\5
'\\”' limit of (x +Ax) sy,

Ay A X .
\i"\, ; limit of —"— Y@t ;; v ) 18 !P:(x):

\'_ limit of ¢{x) is $(x),
which gives for the limit of the right member of the equation

() (%) + ¢/ (%) @ () 5
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while for the other (or left) member of the equation the

Flx - Ax) Flxy .

limit of is F'(x).

Putting these limits equal, we have : e

¢\
Flay=¢'@@)+¥@e6). O
In words, ke derivative of the product of fhwo ﬁ&;ﬁ;‘iam 75
the sum of the producks obtained by mzzlz‘@[yzrzq %Adfﬂmz‘r“
of eack function by the other function.

' A[2%(1 + 27Y] _ d(xt) / {+x2
Thes O = (AR

=2x(1+ gﬁj{-fzx s
= zxfl,-{— ZxQ)

R
EXAMPLES -—1. Find the dgrwatwc of (14 a®)(1— ) fisst by
§ 29 and afterwards hy multlpl)ung out and then differentiating,

2. (24 2% @5+ 5, 4+ 1) (% — 2),
B+ DG+ G T+ 8), (o + (et hemd 5) (g0 4 7).

8. Prove § 2S\by using § 29, regarding £ as a form of ¥ (), whose
derivative is zégo.  (See § 27, end.)

4. Prqn@ § 29, using a different notation,’

~/ CoroLLaRY. —If F(a)= £(#) (2 fa(2), we may abbrevi.
\tgﬁ(x) So(®) to (), 5o that
Q) )= fi(x) o),
\ " whence Faxy= ANy () + ¢/ (2 Al
Replacing ¢(x) by its value 4(x) fi(#) and #'{(x) by its value
A /() + A () A,

we MV&
F@) =A@ LA A + (A1) ) + A4
=A@ fa(x) A(2) +ﬂ'(-f)ﬁ(~f)f1(x) + A (&) A1) fulw)
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By successive applications of § 2g this theorem can be generalized
to the product of any number of functions, and in words is as follows:

The derivative of the product of any number of functions is the
sum of the products ohtained by multiplying the denvatlve Df each
fanction by the product of all the other fanctions,

ExamrLes, — Find the derivatives of

o

(4 0{x 4+ DE-1), 2@tz t+ P(zat — D4 — ). L \\

31. IfAF(a)= ¢(Ix), and ¢(x) is not zero, then ,'.(N}‘.
I 1 ",\‘
Filx+ dx)— Fx) _ $lx+ Ax)y  ¢(x) W
Ax Ax A\
_ ¢ —olx 1 44)
T Ax ¢(x)¢(x Ax) .
~b T platan) —¢(@)
¢(x)«q$(3l‘:+Ax) Ax
or at = _-
the limit F/{(x)= \[ﬁi’t )]s - ¢'(x)
AL =)

\\”’ @71
That is, the, dérivative of the reciprocal of a function is
minus theh ﬂe’matwe of the function divided by the square
of the fﬁnchon
Ti{us\}thc differential quotient of — 15
N —d(32
> K Cbx oy =2

32. ExavrLes.

1. Find the derivative of

i t+2x
LR SN SN S Lot 2z

14 14 xgat P Thrar  (Estat’s

Q)
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2. Show by method of § 29, that if
Fla) =20,
©=Gy

0. P — Ve
then Ft= W f
where the (x)’s are omitted for brevity.
3. Prove 'the same theorem by applying results of §§ 29, 31, aLt\'ét}
throwing # in the form ¢ ,\". Y
¢ 14 O

33. We may interjcct here an application of the (q&qlt* of § 3%
to generalizing the theorem of § 16, The differentidh Yuotient of x»
was there obtained unly under the restriction th{t 2h be & positive

i
integer. But if 7 be a negative integer, — 1, then’ fﬂwomm es . This
x?N
fraction has meaning only provided the derzomynator is not zoro, e X
is not zero. The differential quotient bechmes
— mam—Ly
L
x@“
which reduces to — mx—@‘ AN “or nam-lL

N

That is, the restric t‘\n unposed in § 16 that # must be
positive, may be rc{mbved

ExaMPLES. .

1. Differentiate x2 2. Differentiate 3475

3. Diﬁe;ﬁpﬂ:;te 1, _ 4. Differentiate ——.
Ed gx®

343\’} we wish to differentiate the quotient of two func-
t(o}s as ﬁg—) we can do this by combining the results of

\ §§ 2g and 31, for the quotient may be written b(x) + ( )
x

Thus, the differential quotient of 1+a? obtained by writing it

{1+ 2% —a; Applying the theorem for products, we get

‘(=)
. 1 — ( i 4 (14 2%
(49— dx + I—.:rs) dx '
which can readily be reduced.

L\
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1f the student prefers, he may simply memorize the result of example
2, § 32, and apply.
35. Jf 5 is a function of y, and y of x, an increment Ax
of x produces Ay of 3, which in turn produces Az of .
Az Az Ay,
Ax Ay Lx O\
The limits of these magnitudes (assuming that definite M
limits exist) will therefore havs the same relation, viz.: 3 \J

Evidently

ds_di  dy, A0
dx dy ax '\\
This may aiso be expressed : \/
if F@=6Lf®)
then Fiix) = 'L @) @™

It mmust be carefully noted that ¢'[ j(:r)] £neé.ns the derivative of
¢l[f(x):|, s20¢ with respect to &, but wlth,respect to f{x). Itis L2 not
i L] | LN, v
dx’ df(x) ‘oS o

In words, the derivativg sinth respect to x of a function of
a function of &, is the dérivative of the former function @dfh -
respect o the latley, {)ulhphed by the derivative of the latter
with respect fo X, :

Thus, if = (’I -‘Mrﬂ)g = maybe found by denoting (14 27} by

or again it is -

and then I‘mdmg % frnm y = g®, and %ﬂ from w=1 + 4% Whence
a"y a’jf £

"N = 7 7? = 2.
dr & Ny T wh s 2e= 301 +x2) 2%

B';R\hf nse of @ is quite unnecessary, and the student should learn
ic‘ tispense with it as well as with p also. The required derivative then
A1+t a1t
&1+ 2) ar

Employing the notation of differentials, the process is even
more easily remembered and applied. The differential of

¢ Ax)] is
B[ /()7 or $'[AX) 14 (%), or $TA®) 1S G

&\ becomes
}

=3(1+at)lzx
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That is, we first differentiate, treating “ ()" as a single
character, and our result contains 4{x). We then perform
the further differentiation indicated by this 47(x).

Thus, A+ 2= 3(1 +22)%(1 + #2)

=3(1 + a2 xdx,
where (L + )" is first kept intact as if it were not a combinatinn T

@

symbls, but a single cumbrous symbal, . ‘“\
36. Exameres. - - N\
1, Differentiate 4{z 4 x3)2, : s : '
2. Differentiate (7 + )5, O
3. Differentiate 2(1 +2x+aNh A, 1201 +.t)(i’ + 2 x4 592,
" 4, Differentiate (32 —2)4, K s \\.:
. - I W
B. Differentiate re ey el R ~‘x\
6. Differentiate — 3 -~ Iﬂ;ss. —_wox(xt) _
P EE AN CEESEr
7. Differentiate « + (1 + .x&)"vj—:(‘l 4+ 28 L (1 + a5,
8, Difierentiate ™

3

(3(¢ma+ bx + ) +¥T+S5:Tc)2) (h — m(ex® + b 4 O)™).

3%7. Inlike m'é.{{)qr, 1f we have a function of a function ol a fune-

tion, N
WE O AD=e@lADD,
we may show that P2y =/ [E() 18 ().
Subsm}hng for Eits given value and for & jts value as obtained by

§ 35, e ve) Have
PN e = L W LA (e,

~and so on for any number of fanctions, If we use differentials instead
\ of differential quotients, we bave

@id1(delds(-) D} =t/ dge
= 1o’ dpa
= ' Ga"Paldipy
= etc,
The proof is left to the student.
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LyamuLes.
1. Find the derivative of -
41201 + 272 + 301+ 2% + 5 {201 + 27 + 301 +
8. Differentiate {@ + {4 + (¢ + )% - .*{\\_
38. The results of this chapter may be thus summarized - \<>§ '
T A + £ ' o
., LAE) i{é(x) £ ]=f1'(x) AOERD Q}\\“
o
(l’ o ) (/
2. T gy + -p(xw(a{\’ﬁ'\-
. )
d[ K \J
5. MBI gy, Q

$
d[@] _ ) :;é'

S I FYETI AN

s, HEIL g/
S
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CHAPTLER I o>

T
DIFFERENTIATION OF THE ELEMENTARY FUN-C’I:IQNS"
’"\' &

30. We have learned (§§ 16, 33) that thé\derivative of
x* is #a™!, where # i any integer. x"\l} the clementary
algebraic function. 0’2\

We have now to differentiate eletpentary functions called
“{ranscendental” To do this \we recur to the gencral
method of differentiatien. }Vg’kﬁrst take up the trigono-

ol

metric functions. R
40. (5in &) -—111;;5}“ {x + Ax)—sinx
A LA A

g \} =l SN €08 Ax 4 cosxsinAxr —sginx

\\ Ax

7N .
'..}.} =lim{cusxw—sinx-ﬂx}
AN/ ax
2 P i
'Bmf,"\l:"-‘:\‘-25 becomes unity at the limit when ax becomes zero, and
:"\’so Ax
4 Sudos Ax b )
7 %“7 2COMES Zerd.
AN Y Ax
&

NS
;"\; » These are shown by means of Fig. 4, where 458 is an arc aAx on a
™ unit radius @4, 8o that BC is sin Ax, €0 is cosax, and €A i
' I — Cos Ax,

SIMAZ 5o therefore §£,
piy; |

and I — Cos Ay s ﬁ
Ax £BA
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When B4 Lecomes zero, C4 and BC become zero, The proof

that lim BE_ 1, and limC—A = 0, is left to the student with the follow-
A %

ing hints:

1 > B L BC_ o which appi’u@.ches 1 as linit,
arc A4 M4 A i \
\d .
g CA_fd BC_BC BC{ wﬂm.h approaches o X L.
BA B o B 4 C' B \B

Hence dsin g 5cnsx X [—sinxXo
AN
) =cosx
In like me.n'ne&, W may prove
L)
N/ -
@7 L
\V
)
\Y .
A /’ s
oo a'l'
<4\ dtan o (cos x)
L r T e——
A\ dx ax
Q _CosXCOsx + sinx sinx
cos? x
[ S
cos? x
Similarly, dicotxr)  — I,

qx sin? x
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I
dsec.x d( e} x) .
42. —g == etc., according to § 31,

a;(cosec .1Ic) d(ﬁ)

and r = p = ete. .
. iy
. M
+&7 7
43. d(a%) = lm arhar - gt \"}
ax Ax N\
gt _ "N
= lim ¢* + ——— , \'..
)
Now let w1 =8, s0 that ad=s =Y +‘8;
and Ax loga =log (x + &), _
: $
and Ax = log (1 + 6)\\
luga S
d(a") - \ &
Then a = log(l 13)
v,.‘; loga
o™~

N hm a®log 6 ———— T3
P
¢ \/ . ) 4
\\ "’ =lma®loge ————
O log{(1 + 5%
:~ > N l
The Ii:}lig of (1 4 )4, when & becomes zero {which evidently occurs
wheh 8% becomes zero) is 2.718 approximately, and is called ¢.*
O
\”* This fundamental magnitude may be pictured as follows: Suppose
mterest is at 49, corresponding to *25 years purchase” $t coni-
3 pounded yeariy for this 25 years amounts to (1.04)%. Compounded
half-yeariy for the same 25 years, it is (1.02)%; guarterly (1.01)17;
1

™
\

2\
\; -4

daily (1 + sgton) s mowently, Tin (1 4+ 8% or o Thus ¢ is
simply the amount of 8 1 at momendly vr continuens interest during the
#purchase period,” This is £2.718, whereas with guerterdy com-
pownding the amount would be $ 2,703, and with yeerdy, § 2.066.
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Hence at the limit, @:
X

This result is independent of the system of logarithms, It is true
of # comumen logarithms.” If we take ¢ as thé base (¢.c. employ the
Naperian sysivin), then log ¢ = 1, and the result simplifies o

@-:a=lagm .
dgx

Finally, if @ = ¢, the result is still simpler, for loge=1. -We thgn\../

'\.

have : - _ R Y
, g..
Henceforth we shall denote common log}ml;hms by
“Tog? and Naperian logarithms by “log.” Agy other sort
of logarithms will be denoted by “log,,” whete the subscript
M :

& denotes the base of the system. N

N\

44. We now proceed to the inverse fu;lqti;‘m‘:: of those just considered, -

¥ = arc sin x, means that y is the @8 Whose sine is x (sometimes
the notation sin~1 x is used), Z.e 1l meéns the same thing as

x 4-‘alny
From this ...@ = cus ¥
O
Y \ =+/1 — sin?y .
e il =vVi—a .

N\
But %% 'rg'ﬂ‘:e reciprocal of g, since these expressions are the

limit \“:ﬂutw of 5 and _ﬁz’ which are reciprocals.
W\ Ay Ax , .

N,
N

£\ “Hence &1
dr 1 — 22
Or a{arcsin x) _ I
dx VI — at
Similarly, dlarceosx)  —1

dx Vi—22

K xf\'..'
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45. If y = arc tan %, then x = tan j.

dr__1_
dy  costy
= sec?y
= 1 + tan?y '{“\
=1+ &2 '“\ 4
' i « W
Hence S-S S o\
dr 142 '\“§
o (arc tan x L +%7
Or { - ) = Py . \\\v
Similarly, =~ Zarceota) - — \\\ ’

2
dx 14 x ‘x:\b.,

46. Ify =logx, then & = i, Where’ &"1% he base of the systew,

dx S 1
H == ¥ log i
e B AL loge
Tut logy 521, s
N
Hence \;’{f‘_— a1
P logse
A\ D
¢ < : loger
Hence \ \ ' gy _loge
L ax x
o W

This is, imfependent of the particular system of logarithms.
1f; h%«e then logse = 1, and the result simplifies to

4
{\ 2y _ m- dy= x,
O N )
N ¢ 47. We may now still further generalize the theorem expressed in

w 8§ 16, 33 The number # has been restricted to an 111teger ‘But if
¥ = a" where # is any real number,

then log ¥ = » log x.
Taking thé differential of each side,

- -3
¥ x
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Yy _ny

Hence
dx

= nx"—\,

35

7
\\

That is, the restriction of §§ 16, 33, that # must bhe an{t}\‘

integer is now removed, It may be 2 fraction, an irra
namber, or any real number whatever ’

Exanrrus.

1. What is the differcutial quotient of

R T 11
%, 2%, xf, Va, Va, x 3, "_‘/_\'

tio
N+

Y

—_— s g 8 - A
2. Of VT (xf — 103, Ve +:&~ + cxt?
L)

48, The resulis of this chagt;&f‘may be thus summarized :

S
Ny

DMeECT 0 SCTIHONS. a\

Y

S
3

A2y = nx" iz, g

d{ma™s = g™ .%?)/(r\
s & ) §

¥ 4

d{sin &) =gt .

A\
d{cos gt'j\,—_'-}— sin adx.
i
\Y
N - ox
AEin x) = L
Q cos &
=~ :
- - d
» L —dx
Q“:} d(cot.’l):- . "
N7 &
i
d(a7y=- ¢ Logadx
Tog e
= a° log adx.

Al ™) = ot T

INVERsE FCNCIIONS.

Z{arc sin x)= _dx_
VI —a?

dlarc cos ¥} = \—/-_i_x-;
P —

&{arc tan x)= I—f_x?

— dx

&(arc cot x)= Tra
' ax
d(Log x)= - Loge

d(log x)= df
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No function inverse to x* {or to the more gencral form
kx) is given, since in this case the inverse s idertical in
form with the direct function.

(Thus, if ¥ = 47, & = y* = ¥, a form identical with 2%, its invurse.)

1

49 EXAI\-{I‘LEs: P
“1. Differentiate 3sin x. A\ by

8, Differentiate 1 — asiny -+ dcosx :\S 3

/
3. Differentiate 2sin xcosx. Jasn 2cos2a RV &
e A

4. Differcntiate sin x tan x. \\

8. Differentiate cot x + 2% cos o :"}}'

8. Differentiate log x 4 tana cos a. A{z&ik 4 cosx.

7. Dlﬁerentmte &%, Y LV

8. leferentlate (alogx — dx? 4;‘4’:}1")‘(1

9. Differentiate sin 3.2, AmK‘3‘tos EEA
10. Differentiate cos a2,
11. Differentiate tan (1\ x4 afy.  Ans. —_rdzx |

) cosf(1 + & + a%)
13. Dlﬂ'erentlg‘esfs‘g\x" += ! +xtan (x4 a® — arc cos 3 X)-
x
79 \.,
PN/
’s 3
I
&/
W
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SUCCESSIVE DIFFERENTIATION k1

CHAPTER IV

SUCCESSIVE DIFFERENTIATION — MAXIMA AND MINIMA

50, ‘The derivative of 2 x4 s, as we know, §af lhE\\ -

derivative of $x* is, in turn, 242% The derivative .0 a
P
derivative is called the second derivative of thc aPrgmal

function. ) ~\
When 7{x) stands for the original functlon, and F'{x)
for its dr,rn ative (1o avoid mlsundelstam Jwe must now

call it the frs# derivative), then Z"”(x)\denotes the second
derivative, and #'"(x) the third derwablve (ie. the deriva-
tive of F'(x), etc. Dl

Again, if we use the notatloir % for the first derivative.

O

ad ﬂ’}:)
the second. denmtwe\xﬁ evidently _(dd?_’ which is usuaﬂy

© (f‘” J’)
abbreviated tg.ﬁs{' Yikewise the third or zf is written

By O ,
%g, and shim to (3}4, d}r_,
e Y b dx
C \’

h},A__\II’LES.

:’;’Q 1. What is the third decivative of #32

2. What are the 2d, 3d, ath derivatives of x2?

8. Differentiate successively xm. When, if ever will the answers
become zern?  What sort of a number must 2 be to bring ahott sucﬁ
& result ? -

4. Differentiate successively sin x. A#us, cos a; —sin#, —co5%, stn X

\

AN
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8. Differeniiate succussively tan .

6. Differentiate successively -

7. Differentiate successively arc sin a.

8. Dhfferentiale successively arc tan a. P
dms L __2zx o _z(i=3#) N

I+ a? 0 {1 a?)R (I+x2)9:,\\~
9. Differentiate successively log . 8 /)
\v/

52. Just as the firsi derivative threw light on thq‘}ﬁ\fﬁﬁl’ems
of velocity, tangential slope, etc., so the secon{({%rlvative
will illuminate aceeleration, curvature, ete. » NO)

We have seen that if for a falling hody {%\16 2% then

X’\ w
ey ¢*
7= 32 Lo (1)
AN\
2 W
whence % ,_7:3.3' . (2)

We may understand thtﬁ‘}e“sult better if we designate (—i;
by #, as in § 6, so that Cr}%ecomes ' ‘

“;\\ v=321, (1)’
and (z) i\:\&' @ _ 2 (=)'
N PR
where d?irf{g ,:é'{ridently simply
O
~e &’
\J e

#

?}:for both are mere abbreviations of

N
g

*\”> 25
\/) @ .

Feia
What does equation {2) or {2)' mean? Z? means fhe rate

at which the body is gaining speed. It is clear that moving



SUCCESSIVE DIFFERENTIATION 39

bodies do gain or lose speed, and that some gain or lose
faster than others.

The gain or loss of speed has nothing to do with how fast
a body is going. A slowly moving body may be guining
speed very fast, while a fast moving body may not be gain-
ing at all, or may even be losing specd. '.\:\’

If we use the term 2o to indicate a unit of veloeity, ory
one foot per second, we know from (1) that a body wl nch"
has fallen 2 scconds has then a speed of 64 velos, v.h‘lle Bt
the end of 5 secands its speed is 160 velos. Here\ks‘a gain
of 96 velos in 3 seconds, or an average of\g2\ welos per
second. A\ )

This does not, of course, imply that th boch had gained
at the rate of 32 velos per second all Yhe time.  But equa-
tion (2} tells us that this is the case, \2 falling body on the
earth is consfzndly gaining ve]outyat the rate of 3z velos
per second. &Y

Rate of gain of wvelocify 185 enlled acceleration, and we see,
thcrefou, that a fallingMoHly is a casc of “ uniformly accel-
erated motion. 4 x\

Ohserve that thc‘abtheratiun or rate of gain of velocity expressed in
32 velos per segguPeannot be cxpressed as any number of feer ger
second. On'th’we Jontrary, substituting for the word “velos™ its dufi-
nition ¢ ﬁ,': persccond,” we see that 32 velos por second is 32 feel per
seegne pew Setond.
1L, Sdistance a body moves in time ¢ Is not 1647, but 10 £, then its
vdcﬁ: is 3072, and acceleration 604 In other words, its aceeleration
) 111 this case dupends an the Gme. 11 the body has fallen 2 seconds, its
<\; ,,‘3-0061"1at1un is 120 velos per sceond 3 i 3, 8o velos per second ; et
53. If F{x) expresses the ordinate of any point on a
carve when the abscissa is x, we have seen that F'(x)
expresses the tangential slope at that point. What does
£'(x) represent? Evidently the rate at which that slope is
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changing at that particular point as x increases. It denotes
what we may call the curvature at that point with respect to
the axis of &.

A —" A
A A
Fi6. 5. — A, rate of gain of slope positive 3 B {* paint of inilectiayj{‘\, Zéro;

C, negative, 3

Curvature, however, is usually measured.gith respect to
the tangent itself. The expression for thi§, #he more proper
sense of curvature, is somewhat mofeScomplcated. At a
point when the curve is horizontaly the two sorts of curva-
ture are identical. &N

*
N
N \ N
‘N

54. When the curve ig Hdrfzonta.l, the slope of the tan-
gent 7'(x) is, as has bEen seen, zero. But the curve may
be herizontal at thr{é.‘s‘orts of points: a maximum as at 4

N\
’E)q_\ﬁ,—Paints of zero slope: 4, maximum: B, horizontal poine of inflection!
NNy O, minlmun; 2, maxinum.

e N .
\W) . " .

3 and D (Fig: 6), or a minimum as at C, or a horizontal point
of inflection as at B.

A maximum point on a curve is a point such that the

ordinate, or ¥, of that point is larger than the ordinates of

poinis in its neighborhood on either side. (The phrase

™
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“points in its neighborhood ” means all points on the curve
within some small but finite distance on either side.) A
minimum point is one whose ordinate is less “than the
ordinates in its neighborhood on either side. A point of A
inflection is one where the neighboring parts of the curve '
on opposite sides of the point are also on opposite sides of \:\
the tangent as at B in Iigs. 5 and 6. O ’

In the neighborhood at the left of a maximum thta.é.‘lppe
of the curve is positive, while on the right it is ‘hegative.
For a minimum, the slope is negative on the le{tﬂ}t& positive
on the right.  For a horizontal point of infldctisn, the slope .
is positive on both sides or else negative, einBoth sides.

It is to be obscrved that a curve may ha\:e}u;r'e than one maximam
or minimurmn, and that a maximum ordingte Hoes #of mean the gre_atest
ordinate of all, but only the greatest\in &fs neighborhood, Thus the
ordinate at 2 is & maximum, tiunugii~thit at A is larger.

55. Dropping the symi:)b'lism of the curve, it is clear that
when a function F{xjteaches a maximum or minimum, then
F'(x)= o, for F/!(k))epresents the rate of increase of F(x),
and at a maxim\ﬁ) or minimum this rate is zero.

But if, cdnversely, we have F'(x)=o, we simply know
that for that/particular value of x which satisfles this equa-
tion B 1s not increasing nor decreasing. We cannot tell
whefher it is a maximum or a minimum or an inflectional

.'s‘fé{ onary” value (r.e. one such that 7(x) will increase for a
Lo\ ehange of 4 in one direction and decrease for a change of & .
#\./ It the other direction}. '

\

*

56. Now these questions can be settled by recourse to
the second derivative, provided this is not also.zero.

If the second derivative be positive, the function is &:
minimum ; if it be negative, it is a maximum. This will be -
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clear if we remiund ourselves of the meaning of the second
derivative. It indicates the rate of change of the slope. If
positive, it means the slope is increasing; if ncgative, it
means the slope is decreasing.

If, therefore, at a point where the first derivative or slope

is zero, the second derivative or “ curvature ” (§ 53} is posi-
tive, we know that at that point the slope is inereaiing. Bug

as its present value is zero, it must be changing from a jrega-
tive to a positive value. This can evidently only og.mr at’a
minimum. Fer contra, if the second derivative w\r gative,
it indicates a slope growing /Zss, i.e. (as thelslefe is now
zero) changing from positive to negative. o Phis evidently
oceurs at the maximuum, and nowhere elsé, “

)

Thus, take the function x* — 27, Tkiié'fms for first devivative
3a® — 27, and for second derivalive 6x.: \ Putting the first cxpression
equal to zero amd sulving, we hnd.x =4 3; that is, the fuaction
2% — 27 x has two points at Wl]'LC!i Mt i3 stationary (or the tangent is
horizontal), where x is 3, and #lgre x is — 3. The first of these is a
minimum, and the second w@aximwn ; for the second derivative 6.« is
positive for x = 3, and 'nie'gg\\ive forx =— 3.

~

5%7. The exceptional case mentioned in § 36 (viz. where
the value ©f &, “which renders the first derivative zero, also
renders .the” second derivative zero) seldom occurs in
practw&~ When it does occur, we cannot decide the nature
of ghe Tunction for that point, without recourse to the third
.denvatwe If this be positive, the function is neither at a
o) maximum nor minimum, but at a hoti-
zontal point of inflection, as at 4 (Fig.
7), when, for an increase of x, the

Fic. 7. function was increasing, both befare
and afier the point. If, on the other hand, it be negative,
the function is at a horizontal point of inflection as at B

A
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(Fig. 6), when the funcrion was decreasing both before and
after reaching this point.  If, finally, it be zero, we are again
left n the dark as to the nature of the function, and must
proceed to the fourth derivative. We employ this just as if
it were the secoud. 1f it turns cut zero, and forces us to
consider the fifth, we employ this just as if it were the third,
and s¢ on.

we go on until we find one whick s not zero. If this dﬁ;‘;’%ﬁfz‘e
fue be of an EviEN erder (ie. 2zd, ath, Oth, etc., dg{“&v’a'tive),
we bnow fhat the function is either @ praximiuay by mini-
mum, and is the aie ov the other areording a: Bt deripative
in guestion is ncgative ov pestlive. Rut'i{'\he derivative
which does not vanish is of an edd ord;cfiéz.f. 3d, sth, ete.),
we know that the fonction is neither, aba maximnm or mini-
mum value, but at a point of hgl”i:ziontal inflection and is
increasing or decreasing accordiig as the derivative is posi-
tive or negative. N\

58. We shall not dgv(iitg\the requisite space here to proving the
trath of the last sectibe‘in full, but shall merely indicate the fivst step,
leaving the student M he so desires, to extend the demonstration.

Suppase in tes-‘_;iné the function #(x) we find for the value of ¥
u.'hich tenderg VM(x) = 0. that #{x) is also zero, but F(x) is pusi-
tive. Denéfind this value of & by ap, we may state the problem as

follomz\;:tg‘;\?én
N

j;.j(x'l) =0,

3 F'xt) =
NN (‘x'l) Q,
b F x>0,

a\¥
\ 7 to discover the naturc of Flax)

We shall solve this by reasoning from £7 successively back to Fr,
Fl,and 7.

I f s . te g ¥
o Since F''(x1) is pusitive, it shows that Ff(x] is dnereasning a8 x
creases, DBub as F'(x)) is zcro, the fact that & #(x) is increasing

AN

. . . L O\
That is, as leng as the successtve derivatives furin ol 26r¢,
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shows that it was negative before reaching F/'(x1) and positive after,
. This iz our conclusion for V.

Since F'f(x) was negative before reaching #M(x) it shows that
F!'(x) wa§ then deceessing, and since F7'(x) was positive afterward,
F1(x) was then increasing, &

But, if £/(x) is 2e10 at F'(x;) and was decreasing before and in-, )
creasing after, it must have been positive both befure and after. Thig N
is our conclusion for #7. Since F' is positive both hefore and #frey,
it shuws that #'(x) was increasing hoth before and after, and i% t5\e-

. : i
fore not 2 maximutn, buat a horizontal point of inflection. ™

Thus let 7(x} be 0O
at—6z% 4 8x 4 7. A\
Then Flis 42 — 122+ 8. f
“Then Flis12a% — 12, 'xt)\\"
. i . \
Then Fi s 24 NI\

LD .
The roots of F/ =0 are 1 and — 3, “For & = 1, &/ vanishes, bat
£ ig positive.  Hence we know thab® or 24 — 642 4 81 + Fisala
- . - a = N . - B
stationary inflectional value increadidg on either side, as & increases.
NCred

But for x =— 2, F'' iz positite.” Hence for this value of x, 7 is a
4. N
minlmnn, : - - _
<\ .
\

50. ExaMrLzs. -*—‘I.} Find maximum or minimum value of 22,
-2, Tind maximum br minimum value of 322 — 27 1.
- 3. Find rnagéirmtm or minimum value of 24 a4,
4. Fingd ﬂﬁ}if‘lmum or minimam valae of &% — 12 + 6,
5. Fﬁm\c{ ‘Taximum or minimum value of 2x% + 6+ 6 + 5.
.*ﬁi;{d maximum or minimum value of &% — 21 + 342 — 4.
Q}‘ What is the nature of x — 24384 640 4 10 fur w = 27
.,,\~:‘{.’ % Whatisthe natureof #' + 403 + 648 L g + 17 for = — 17
~\J :
4 60. If Mx) is of the form ¢(x) + K, where X is any
constant, then the same values of x render & () a maxi-
mum or minimum as render ¢(x} a maximum or minimum
-Tespectively, '
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For the nature of F(x) or of $(«) as to maxima and minima de
penids exclusively on the nature of their derivatives, and the derivatives
of these iwo functions (viz., p{a)+ & and ¢{x}) are evidently identical.

Thus to fnd the value of x to render

x"—}-z([-{--\;—a)

2 maximum or minimum, we may drop the constant term and simply
inquice for what value of x the form #2 is a maximum or minimum.

L ¥

P

61. If F(x) is of the form K${x) when & is 2 phsElive

constant, then the values of x which render # (x)"‘a'\maxi-_
mum or minimum are the same as those which Telider ¢{x}
a maximtm or minimum respectively. Ky \\~

If F(x)= K¢(x) where K is a xng:z’?e‘tonstant, then
the values of x which render F(x) a nagimurm or minimum
are the same as those which render $(¥) a minimum or

maximum respectively. ™) :

) e
N

Vor the successive derivativesfithese two functions (viz., Ka(x) -

and ¢:(x)) are "\
Ryl #'(x)s
&) - and { V()
te. . BEC.,

and evidently thé.)zrer.? same values of x will make the two ﬁrst__dg_riva-
tives zero, ang) & be positive, will make the two second dérivatives
of the samq:’b:@rf or both zero; but if A be negative, w_ill make them of
the o mgﬁé sign or Loth zero. Similarly for the twe third derivatives,
ete. f{\%&ée the natures of & and of ¢, as respects maxima and minima,

depend exclusively on the signs (+, —s or o) of their derivatives,

~tlie theorem is proved.

' Thus, to obtain the value of ¥ which will make
%)
1 — (2% — &)
( 'z
A maxirmum or minimum, we drop the constaot factor {which is evi
dently positive) and find out which values of & make x* — %, a max:

mum or minimum.
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ExaMPLES, — 1. Interpret the theorems of §§ 60, 61 geometrically.

2. Find maximum or inivimum of §5(f + x + 2%+ 10,

i ni I /o
3. Find maximum or minimuam of — 3 x(x +14+ xl) 2\
2 . y
4. Find maximum or minimom of m { a(x? + 5’; + et e Iy } ’ \\
; A
N

l ‘.
62. The subject of maxima and minima is opg ofi the
most important in the Calculus, and has muumgsqblc appli-
cations in (Jeometry, Physics, and Economiegs

H D“w K
“Fic. 8.
..\

Let ARC (¥ig. 8} hg any triangle, and ZFKH a rectangle in-
scribed within it. & b'i'nscrlbed rectangle will vary in size according
to its position. A too low and flat, it is small. I too high and thim,
it is also smalh owet“een these positicns there must be a position of
maximum,g \vlk{e the area is the largest possible,

Nowxft&area is the product of the base /74 or A5 by the alitude
D "‘f\E{ the problem consists in discuvering where A/ 2237 is a
ma3\1 Mm.

o do this, we must first express £/ and 24 in terms of some one
\ avarla.ble Out of the many possible (e, BH, RK, AE, FC, EH, HE,
’"\' W et } we select 47U, and dencte it by x. We call 40 =5 and B
Evidently WD =4 - x. To express S in terms of x, we proceed as
follows : The triangles 4 ZF and 4B are similat, su that their bascs
and altitudes are proportional, That is,

AM _ErF x _EF
4D BC T b a
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whenee EF=2%
A
Consenuently EFX DM={(k—x) %{.

We wish to know for what value of x this expression is & maximun. '

e may onit the positive constant factor %, leaving r
P
(7 — a)x or Ax — 3, U
the first differential of which is %2 — 2.7, N
which, put crual to zero and sulved, gives s ’ii“
L4 , .‘\
= v’
2

the required answer. ~\J

We arc sure it is a maximom and not a m'nim}m or stationary in-
flectional valne, since the second differentialds 2; -i.6. negative.

We have learned, therefore, that the rhﬁ}fifr;um rectangle inscribed

N

in a triangle is that whose altitude is ha‘}j: she altitude of the triangle.

In physics many impnrtapt“f)rinciples depend upon max-
ima and minima. Thus thé:équilibrium of a pool of water, a
pendulum, a rocking cliajr, or a suspension bridge, is deter-
mined by the copdition that the centre of gravity in each
case shall be at the lowest possible point.

In econoplics we have the principle of maximum con-
sumer’s L:ari},ﬁof maximum profit under a monopoly, etc.

e/

\ 4

&
'ﬁé‘.; FxampLEs.
\} How must a given straight line be divided so that the product

UBf its two parts shall be 2 maximum ?

8. ‘What is the minimum amount of tin necessary to make a cylin-
drical vessel which will have a given capacity A? What must be the
relalion between the height 4 and the radius of the base 2

3. Find the maximum cylinder inscribed in g circular come of
revolution.  Ans. Altitude of cylinder equals one third that of the
coneg,
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4, Find the maximum rectangle inscribed in a semicircle.

Ans, The sides are 1"\/5, and »+/z,
2

5. A cylinder of revolution has a given diameter. What altitude
rust it have in order that it may have the least total area in proper- o
tion to its volume? ¢\

Hiwe. — Express volume and total area in terms of the variable alth, ) D

tude a, and the constant radins ». Then find when - ¢ ‘u".
total area . s ' s
—=" """ is a minimum. (V¥
: volume N
6. I the function g5 ) is continuons, what equatich,gives a value
of p which makes the function a maximum? INY
White the algebraic expression denoting the o\mhtm‘n under which
the value of #,in the equation asked for, corresRonds to & maximuem or
minimum,

N/

7. I the price, #, of an article is f‘xt:(’i'é‘nd the cost of producing it,
for a given individaal, is a fumtlo«n P(x), of the quantity produced,
#, how much muost he produce gt miakz his profit, xp — F(z}, a waxi-
mum or minimum? Expresss this result in words. What condition
must F{x) satisfy that thqﬁp{ﬂﬁt may be 2 maximum and not & mini-
mum? Express this condition in words.

8. Four equali\gquares with side x are removed from the corners
of a square piecg of fardboard with side ¢ and the sides are turned up
so a5 to formpanfoben square box.  If the square box is to be of maxi-

mum vnlurﬁ‘s;‘v\hat will be the value of x in terms of £7 Awus, %

h& distance hetween two points, B and ¢, on & coast is § miles.

A per}wn in a boat is 3 miles distant from B, his nearest shure point.

Supposing he can walk 5 miles an hour and can row 4 miles an hour,

“Wwhat distance from C should he land in order to reach € in the
“shortest pussible time?  Ans. 1 mile,

10. Given / the slant height of a right cone; find the altitude whey
the volume is 2 maximum, Ass. £ V3
-2



TAVLOR'S THEOREM s

" CHAPTER V

TAYLOR'S THEOREM

terms of powers of variables. Thus (@ +x)* becomp%"ﬁy
the binomial theorem ' <§."
al+ 4 x4+ 6 2% 4 ax® + ah \S,
Again, by simple division, we may show tb}t,(prowded %
lies between — 1 and 4 1) \*
I =1 —x4at— .%3-1-
T4x .\
Now the Calculus supplies a muéh simpler and more gen-
eral method than algebra of~ de\relopmg functions in series

of this sort.
Thus, let ¢{x} be gny\ function of ¥ d.ewlopaé!e in the
Jorm ¢.&\J

Gixy= A4 —f—B(;:\—— a)+ Clx — a)9+D(x —af+
where a, 4 Bv (f' etc., are constants, and the series con-
verges.  Meshall show how to express the “undetermined .
coefﬁcients " A, B, C, etc., in terms of the single constant a.
' B Ccessive differentiation, we have * :
N p =B+ Clr—a)y+3DE—af+
’“\iw’ $"(®)= +2C  +z- 3D(x—a)+
g etc.
* By § 26 which can readily he extended so as to apply to an infinite
number of terms if, as is here assumed, the sum of these terms conr
verges,

¥ 4 ““ ¢
N\
£N\M
64. We know that certain functions can be developed dnv .
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Since these equations (and the original from which they

are derived) are true for any value of x, they are true when
&x =g,

They then become

qS(a): A‘, oy A= qﬁ(ﬂ), A
$@=1-5, s=¢@; &
po=1ac =0 AT

‘f,nr(a):pz..sl), D= _ri:;_cl‘_\
ete., N0

where 2! means 1.2 and 3! m{a’ns 1-2-3 el

Substituting these values of 4,5, “C, D, ete., we have

$6)= () + ¥ WES D+ 9" @ “—‘»’
¢Ur(a) g— + -

65. This s%% ,,'whlch is “Taylor's theorem,” expresses
the magnitude of the function ¢ for any value of x in terms
of its ma,gn:wndc and that of its derivatives for any efier
value df '3:.'

El"hu% if we could write down some cxact formula y = @ (&) fux the
&sfﬂ,ation () of the United States in reference to the time (€3]
\ ‘elapsed since, say 18co, Taylor’s Theorem tells us that we eould get

»\ - the population in Igoo, ¢ («), merely from data of the census of 18g0.

,.\ »
3

N

As a first approximation we take the population of 18go itself, ¢ (2.
But, as the population has not remained stationary, we add a o wweection
for the increase within the decade.

This increase we fiest assume to be (& — a) ¢/(a), f.e. the ratc of
increase known to exist in 1890, ¢'{a), multiplied by the time betwecn
the two censuses (x — ), But sinee the rate of increase (by which is
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here meant 50 many thousand souls per year, not the ?wreﬂx‘agr rate)

(@) (x — @)

. 1-2

cansirucied on the supposition that the rate of increase of the rate of

increase of population, ¢/'(@}, knewn to exist in 1800 has remained O\
constani anlil 1900, Not content with this, we take into account the A

rate of increase of the rate of increase of the rate of increase of popug . \
N
. N/

has not remained stationary, we add another correction

lation, and so on.

66. (eometrically, the theorem states that the qr'diﬁatc
of any point of the curve y= qb(x) can be obta,@ed from
the ordinate, slope, “ curvature,” etc,, of any other point,

g
."” Jl
W\ 7
.::‘C‘ rs
B0
___/\\

N 0 A B

'\'w‘ 1. o,

13' OB (Fig. ) is x and BD, ¢{x); 04 & a and 4C, ¢(a).

g theorem tells us that the ordinate of the point /7 can be ascer-

N tﬂf!‘ed purely from the data as to the curve at £ viz. its height, the rate

M\ . at which this height is increasing (7.e. its slope), the rate at which this
slope is incrcasing (.o its “curvatore™ {§ 53)), the rate at which

this “ curvature ” is increasing, etc., etc. In fact, the (beorem states

that the ordinate £.F is the sum of various magnitudes: first, ¢(2),

which is represented by B8 (for this is the same as 4 C); secondly,

f N
{x — 2)¢' (&), which is represented Ly 88 (for ég—a is the slope of the
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curve at ¢, and so = $!(z), hence 38 = €8 X gila)y="{(x — a) @' {a));
thirdly, L’r—_a—):?—@, which is represented by 8787, when §'f is veached

by drawing the curve (3%, which has the same curvature as the prin-
cipal curve €0 has at the point €, but retains that ¥ curvature” (with
respect to the x-axis, see §53) throughout; that is, we approach D by A
adding successive corrections. 8 is the position £ would have had i \..
the ordinate of the curve had remained unchanged from C (so that tl@
curve would have followed the horizontal €3); &' is the Pusitid}"i L2
would have had if the rate of increase of the ordinate, z‘.e.‘thte slope

of the curve, had remained unchanged from C (so that the Q.Lﬁvc would
have followed C87}; ' is the position D woukd have taken if the rate

of increase of the slope had remained unchanged {ciln T (so that the
curve would have followed 8}, etc. 2.\

X 3
67. If we take the point & insteadvof C, so that =0,
Taylor’s theorem reduces to the simple form
B oy 42 m A
¢(x)= ¢ (o) +¢' (O)m-j[;’?'(zﬁ + ¢—3(?)i + etc.
This is Maclaurin’s Thégrem.

The student will Ohggj[?e that (o) is by no means itself zero. Tt is
simply that particuﬁ(\alue of ¢} obtained by putting # = o. Thus,
if ¢ (x) &% K29 + 117, ¢(0) is 117, '

e\

68. ,ts\'sécond mode of stating Taylor’s Theorem, and one
og‘f}:\et with, is obtained by denoting the difference of
abscissas « — @ by 4, and replacing x by @ 4 % (for, if
"\.j"ﬁ: g =k, x=a+ 7}, so that

W\

) 2 1t 3
O stn=s@rs@n @l
or, changing our notation from « to x,

blx + = 6(&) + ¢ (D + 9" (D)

where & now refers to the abscissa of € instead of that of 2
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The student will also sometimes see the theorem expressed
in the same form, but with y employed in place of .

69. There are many applications of Taglor's theorem in -
sconotnics.  Cournot in his Principes Mathématigues makes
freqnent use of it, as does Pareto in his Cours d'économie '\u'\’
politigue, ‘ \“\

When 4 is a small quantity, as in some of Cournot’s gases
of taxation, then the higher powers of £ may be negléeted,
and we have the approximate formula o)

$(x + 1) = )+ Ad'(x)- N
This is assuming that if the interval AR s/very small, the
point 8' will coincide approximately with.D.

7o. It will be observed tl;la.’!:’éh hiatus was indicated
in the demonstration of Tgt}fkgr’s Theorem. This means
that it is not always possible “to develop ¢(x) in the series
proposed, and that th.g{.’a.ttempt to do so will give a diverg-
ing or indeterminate ‘series.

It is impossible in'so elementary & treatise as this to indi-
cate in whapetases Taylor’s Theorem is applicable. The
subject is ohe of great difficulty, and some of the most im-
pnrtar}t\‘(;bﬁélusions relating to it have only recently been

disg‘{(sréd.

- ."\’:':;:71. To show the application of Taylor’s and Maclaurin’s.
&) “theorems, let us use them to develop the function (¢ + )"
V' agsuming it developable. Since ¢(x)={(a + )"

$'(x)=nla +x) -,
" (@) =n(n — e+ 2,

ete.
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Hence P{oy=a",
¢'(0)= na",
$(0) = n(n — N,
' ete. : ,
Hence ' \ “,'\(\:\:
)= 0+ $ @+ 2% O
Q“Q"

= "—{-?m““x—{—g—lﬁcﬂ_" D Oy

& result which we alrcady know by the blris\\n\al theorem.

Again let us develop sin ., assuming it de&k}able
Since $(x)=sinx S awNgoy=o,
@' (x)=cosx \ \ o) =1,
()= —sinx Q wk q)”(o)_.o,
P () =— cos g ‘;‘ P oy=—

ete, " “« ete,
Hence N
22 aMroled
Ba) = ¢@9\+ @ s ? PO O
K ?
2ot at+o0-T
4 s 3 b
t»\‘s.l "
‘A\.) ‘—x_f_s+£sl__‘x_+
N 30 st 7!
@1?1; let us take —r .
% r—a+1
'\\:r{‘; Since Mx):::z?’ B (a)=1,
o ¢a)=—(x —a+1)2 Pa)=—1,
M (a)=2(x — a4+ )75 da)=12,

P ==2-3x—at )Y  ga)=—
Hence, by Taylor's Theorem,
¢(x)—'l—(x—a)+_.(fL‘3)f 3 “""3_' “)d—}-



TAVIOR'S THEOREM 55

72+ Among other important uses of Taylor’s and Maclanrin’s theo-
rems arc the evaluations of the fendamental constants ¢ and =,
To obtain ¢, we develop the function ¢~

¢la)= & ¢loy=1, .

(tﬁ;(x): %, . ¢](O): 1,

¢Mx)= &, pH{o)=1
etc. ete. . L
2 ot Ja A8

Since  ¢(x) = ¢(o) + ¢/(o)r + 2 (°)"‘ 4 £.20% g?) + )
‘€’
we have ._I—{—x-l-xz—f—;?—}- R “}\

If, in this equation, we put x = 1, we have \\
% w
I, I 1 2%¢
=14 14—+ —+—4 4V
4 + +2+3! al ‘x

> ¥4 R
from which ¢ may he computed with any rég,ui}ed degree of approxi
mation, &= 2,71828 ... LA

U's obtain =, develop arc tanr, «} -
\Q < - .
Pla)=arctans, o8 " ¢({o)=0,
~ oY
#(@)= #/(0)= 1.
N\

Il + be iess than um;x{y know by algebra that*

N IV I,
S S +

Hence q,”(x"jﬁ-zx Jaat— 6% . o) =0,
’@(U:x)—-—z—l—3 cgat— g 6x4+ . BMN0)=— 2,
o\{ww(x)mz 3e4x— 45 Shat . gH(0)=0,
\§ g x)=2-3.4-3-4-5-60"+ 0, P(A)=F 4L
N ete. ete,
- i”\.‘“ "oy 42 ¢rn D).x3
Q~ 6wy = 6 (0 90 & + T _(..I_+
g FEa qlad,
arcta.nx._o-[—x+o+—3—+o+ PY + -
3 5 7

* Tt is assumed here, without procf, that the proper conditions as t¢
cunvergenee are fulfilled.
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ILet x be L, so that arc tanx, the arc whose tangent is Wt . i L
3 vy 6
(i.¢. an arc of thirty degrees). The preceding equation then becomes:

T_1_ _ 1 LI
6 Vi 3(VaE (V3P
1 I 1 I '
=—|I~—-F ‘__—1—.;-]} : N
\/3[ 33 3-8 713 A\
A\ 3
whence r=2V3|1— A 4L £7)
3.3 53 73 .»\\"
= 3-14159 - \VY
N
¥3. ExaMpLES, .‘?}

1. Develop (@ — &)~2 in series of ascquﬁj}‘g powers of &
. Develop Va — . xw
. Develop cosx, Adus. 1— —k’{é’\— ——1—
. Develop log (1 4 2. il
. Devciop a¥+=

2
3
4
5
6. Develop £ Am..{\l— 34 + gx +2
7
8
9

3‘

. Develop $(e2 £ 555},

. Develnpar.p& Ans. x-l—— R £+I" "5.51_'_,,,.
3724 5 246 7

A Develog\.l!s"’x
10. Develgp &% 5eC X,

11. &Mlop log (I + sina). Aus, & — :—2—1- %a £+ e
1& I)evelop arc tan 2.
RS ,1 DevelopT™os (& + #).
N : » 7
» Ans. cosx—ysmx—?icosx-g-gsmx4_---.

14, Develop tan (& + ).
Ans. tan x + ¥ sectr + 32 sechy tanx -i-J—:Esecﬁx(I + gtandx) + o
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CHAPTER VI

INTEGRAL CALCULUS

57

74. We have thus far been occupied with thq'dfsr}{ration
from F of F', F", etc. But it is possible 1 yeverse this
process, and, given £, or any other derivative,'to pass back

to BV, I, F. .
F'(x) was called the derfvative ofnJlr) ;

we now name

#{x) the primitive of F'(x). The\first process of obtaining

F' from F is the subject matigt'nf the 42fes

of which the preceding chapgéfs”have treated.

of obtaining & from F'is ‘the subject matter
calculus. QO
¢ \J
75. Tn the differd
differentiationwds expressed either in the d

tient F ‘(Jg),))f in the differential F'{x)dx.

ential calcwlus,

The process
of the infegral

sntial calculus, we saw that the result of

ifferential quo-
In the integral

calculus;ﬁ\‘ié customary to employ

only the latter form. = We

camxi:}'
Eh}’:\}?z[egml of F'{x)dx.

"tx)dx the differential of F(x);

we now call ()
We obtained #'(#gx from F(x)

:u\’.{)’y' differentiation. We obtain F(x) from F "&)dx by inte-
"\ gration. 'The symbol of differentiation was &; that of in-

tegration is §.

Knowing that #(x%)= z x dx, we may write

or again, since -

fzxr!x::x";

dF(x)=F'(x)dx
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expresses in the most general manner the process of the
differential calculus,

' f Py = ()

expresses the process of the integral calculus. Both eyua- A
tions state the same fact looked at from opposite directiqr.xé.\"
The former equation reads, *the differential of # (&) M5
F'(x)dx”; the latter may be read, *the function-ofwhich-
the-differential-is #'(x)dx is #{x),” for the b ypEQ‘]éﬂ words
are what is meant by “integral of.” 9

The simplest form of the above equation_is f ax = x.

PN g

76. The symbol j‘ was originally a)igng &, which was the old
symbol for “sum of (to-day it is u-sua], fo employ the Greek 2 instearl).
Integration was looked wpon as W(‘pmﬁtion. &y being the limit of
Ay, and Ay being a small part of goghe differential dy was conceived of

as an infinitesimal part of . ARnfinite number of &’s were thought
of as making up the y. L

~\ :
7. As ) i{xgdx, it follows that

fg x? alx = 2%,
</

But ‘t\:"? A(x* 5y = 32 dx;
PR
he;‘\RQw” f;; Pdr=o 4 g;
\.ficj.iat is, the integral of 32 dx (or the primitive of 3 &%) may be
Jaor 2°+ 5, and evidently also &% + 17 or a° + any constait
whatever. In general, fF "(x)dx is F(x) + C, where ' s

any arbitrary constant. For the latter expression differenti-
ated gives the former (§ z7), '
An arbitrary constant (usually denoted by 'y must there-
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fore always be supphed after integrating any differential tc
- oblain the complete integral.

78. There is no general method of integration known
corresponding to the general method of ' differentiation of

N

Chapter I. The only way we arrive at the primitive of a ¢\ ~\"

given function is through our previcus knowledge of wha.t\"}\ i
function differentiated will yield the given function. ,\n
ax™! \
. =*_ L ~
76 fax“ ax n—+ + &, \\ .
provided zisnot=—1. F

is evidenly ax"dx provided # 4 1 is not .a%l'o, L.e. promded
% is not = — 1.

The rule, therefore, for mtcgratmg the simplest algebralc
function is to increase the expcmﬁn} by one, and divide the
coefficient by the exponen‘t*'sg' increased (and then, of
course, to add an arbitrary constant).

Thus, {\g ; dr is 305 + C.
&

go. EXAMPLES »

N \‘) J.z xdx =7

’\5/
O Jsuban=2
O I3ﬁ€x:? Ans. 1a5 4
D
o N o
Q¥ Jer=
4 j‘.r_idx:?

@=? Awns. — -—-I—2+ <
a 2.

fise-
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B81. It may seem at first that a result involving an arbitrary
constant can be of little use. But this is far from true.
Though we cannot determine the arbitrary constani from the
given differential, we may have, in any particular problem, ¢
information from some other source which will enable usto]
determine it, and often, as we shall see, we do not fised
to determine it at all. We may interpret the consr.smt C
geometrically by plotting the equation v = F&x)(—r—«(, To
know F'(x)dx or F'(x) 15 to know the slope’s oF ‘the curve
for any value of ». But evidently the 5]0p§:\of the curve
does not determine the curve ; since, A} Mhe curve were
shoved up or down without change, gf\\férm it would have
just the same slope for the same vame of x. The constant
€ has to do with the vertical pesm‘on of the curve. 1t has
nothing to do with its form. o\ «~

82, We may profitably, }"ollow the plan adopted in intro-
dacing the (li{Tcrentaaivcaltulus and begin by constdering a
mech anical and a geometrical application.

Ve have seen th\at, knowing a body falls according fo the

law / F=16 £, (1)
we can show\hat its velocity at any point is
s
: N —- =32 2
\ s @

uppose, however, we only know that a body acquired
s\eloaty according to law (2), can we pass back to law {1)?
\':’" As has been said, in the integral calculus it is customary to
use the differential form to start with., Accordingly, we
write (2} in the form

ds = 32 ¢ dt.
Integrating, we have

2
.r=f3zfa’t=3—2-2i+0=16:?+ C. (3)
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Now, although equaticn (2} with which we started does
not enable us to judge of the value of C, we may evaluate c
from outside data. .

Thus if we know that s is measured from the point at
which the body started to fall, we know that when 7 was zero,

s must have been zero too.
Putting s = 0 and 7= o in (3), we have .
om0t C N
- # "\'n
or C=o. NN\

After substituting this value of C.in (Q,Jthé' equation
takes the definite form AN
5= 16~ x\ v

83. Of course, € is not always zQﬁ% “In fact, in the shove ex-
ample, we might reckon the distance " of the falling body not from
the point where it started, but grt-.-gmé point 2y feet above. We then

Lknow that when N
=0, §=27.
KF =5
Substituting in (3}, xi’%}ha.ve
27=0+C or C= 27,
and (3) now betomes
A _ 2
¢ 5= 16# + 27,
Evidc,ml’ynt‘he value of ¢ depends solely on what origin we use to
me@}from.

o/

\53\4 Similarly, if we know the relation between the slope

PR (Z . . - 3
{"\of a curve Ri: and its abscissa, we can obtain the equation

of the curve, except for an arbitrary constant which regu-
lates the vertical position of the curve. This example is the
true inverse of the geometrical illustration in the differential
calculus (§ 12). But for the purpose of the integral calculus
we prefer another geometrical example.
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85. Suppose we have (Fig. 10) a plot of y = f (&), Give
o % an increment Ax, viz. 4Z or AKX, and consider the
resulting increment not of y, but of the area OABC or z.

O
B; A '../
&
L
HD A\
BTk
/ '\'
c SV
X Y
N \’
A « \/
™
o
s"&“
e !
o o~ A E K
..,\\ Fie. 1o.

. \J

This increment &g of the area is evidently the small area
" ABDE. Thi§ $mall area is the sum of the rectangle
ABKE andi\the tiny triangle BDK, The area of the rec-
tangle i57the product of its base Ax by its altitude F{x).

So 0D
Q Az=f(3)Ax + BDK, {1}

,~\Evidently the smaller we make A, the smaller the drea
\of BDK becomes relatively to the small rectangle, and may
N/ finally be neglected, giving the important equation

dz = fx)dx. (2)

This is not, of course, a mere approximation. [t is abso-
Iutely exact.
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The reasoning just given is to be understood as an elliptical form

of the {ollowing :
Dividing (1) by Ax, we have

Ay BDE
= - .
yeRrAS v (3
Now LK is less than - PS | ‘\\
Ax ,.\\'I.
rect SFA, . -rect A L ¢ )
[N « \/
Ax DA . ,“}‘ .

But the area of a rectangle divided by its base Is its altituds —in
this case DA,  Hence (3) may be written \{.‘\>\'
As F{x)+ something less than 1{!5
Ax o\

It is evident that when Ax becomes zcro‘,‘QK becomes zero, and
“something less than D4 becomes zero,” e,gﬁgét our equation becomes

which may be written A
i Fla)ydx.

This equation is ofteat written
A
(B, o 5= [y,

» being the ustial symbol for 7(x), the ordinate of 2 curve.

WY/
86. xSq{ppose yor f(x) to be
oY 355+ 35

th{\gs, let y = 34% -5 be the equation of a curve. ‘The
.\‘zdﬁ'tegral calculus enables us to obtain the area # in terms of

Re .
“\) w the abscissa .

Vv We know that &z = {32+ 5)dx,

z:f(3x”+5)d"}
s=at+5x+ C
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The student may test the correctness of this integral by
differentiating it and obtaining (3 +* + 5) .

It remaing to determine C. Since we intended to meas-
ure the area z from the y-axis, evidently z vanishes when x

vanishes. Putting x and z both equal to zero in (1}, we(\/

obtain C=o0. (Ifwe had measured area from some oth.gr
vertical than the y-axis, the value of C would be dlfftra’nt)
Hence (1) becomes z= a4 5. .

%

Thus suppose & = 3; then 5= 42. That is, the aréa inctuded
between the curve y = 322 4 5, the axes of codrdipdtes and a vertical
3 units from the p-axis 15 42 units, I the linegfunits be inches, the
area units are square inches, '\ v
X 3}

87. We see more clearly now than i § 76 why integration was first
conceived of as summation. The aredais evidently the sum of a great
many Ag's, and at the limit is concewéd of as the sum of an indelinite
number of @&'s. Ny ®

The dx is thought of as ant elementary strip of area inﬁnitcl}r DATOWw
—the limit of 4A0E, &

88. The probleh\\of obtaining curvilinear areas was one of the
earliest and is guepof the most important of the applications of the
integral calcuI\Ls Previous to the discovery of this branch of mathe-
matics only‘a Fery few curves, such as the circle and parabola, could
be so tpeated.

. 8} We are here chiefly interested in the geometrical
'symbolism. We have seen that the slgpe of a curve is
““the differential quotient of its ordinate (with respcct to its
ahscissa), We now see that the ordinafe in turn is the
differential quotient of its area (also with respect to the

abscissa}, For & = ypdy means simply
iz

z=

N

\



INTEGRAE CALCULUS 65

If we wish to make a graphic picture of any function and
its derivative, we can represent the function either by the
ordinate ¥ of a curve or by its area, while its derivative will
then be represented by its slope or ordinate respectively.

If we are most interested in the Sunction, we usually
employ the former method (in which the ordinate repre-
sents the fanction) ; if in its derfvative, the latter (in which,
the ordinate represents the derivative). That is, we ustally
like to use the ordingé to represent the main variable:&nder
consideration. X ’\

Jevons in his Zkeory of Political Econoy used the
abscissa x to represent commodity, and thearta z to Tepre-
sent its total utility, so that its ordin}té’ y represented
@ marginal utility” (fe. the differefitial” quotient of total
utility with reference to commog\l?tjf,). Auspitz and Lieben,
on the other hand, in their Untensuchungen iiber die Theorie
des Preises, represent total utility by the ordinate and margi-
nal utility by the sfope oftheir curve.

N
2 N

\

+8 )

go. The methbds of integration enables us mot only to
obtain the parficular curvilinear area described, but also an
area betwperliwo limits, as 47 and A'B (Fig. 10). Evi-
dently thiy- ‘area is the difference of fwo areas CA'B'C
and\a\AB ¢. The first is the value of ff(x)dx, when
O}I L {or &) is put for & in the integral when found, while
M;'\','the second is the value of the same integral for x =04

Vb xp). This is expressed as follows '

A,

i |

and is called an infegral between Jimits, or a defintle integral.
The reason it is called definite is that it contains no arbi
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trary constant, for this constant disappears when one of the
two integrals concerned is subtracted from the other.

Thus, if f F(x)dn be Fla)+C,
T A a)aix K
=, P
means simply  (Flap)+ C)— (Fx)+ C), A\
which reduces to F(x,)—F(x), for € must be tak’en to be
the same in both integrals, \ ~\

The area between the curve 347 4 5, the & axis\ahd lhc twno vexti-
cals erected at v =2 and . = 4 is AN

fﬂﬁaéﬁ +5)de =% + g+ 6'11_4_[;}+ 5 Ceme = 06,

for the € drops out, since for each expresmbh the area is measured from
the same vertical, though no mattcr.wf a¢ vertical.

It is usual to abbrewate«the expresswn for limits.

Thus, instead of £\ f(x)n’x we write f Flx)dx,

3
o\',

gI. There.aé certain general theorems of integration
correqp(mdmg'to the general theorems of differentiation of
Chapter II\ Of these the two most important are :

\“, f Bf(x)dn =K f F(x)dx

QO

¥ [TA@=AG £ -1

=fji(x)(z’x i—f;;(x)azx :I:ffs(x)dx .

The proof of the first {s simple, for the integral of the
right side of the proposed equation is K{(F{x)+ ). or
KF(xy+ KC or KF(x)4 O, where F{x} means the primi-
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tive of f(«x) and C is an arbitrary constant. But €' might
as well be written C, since its value is anything we pledse.
he integral on the left is also KF(x)+C; for this
differentiated gives Kf(x)dx.
‘The proof of the second is also simple. If we denote

the primitives of A(x), A(x), - by Fi(®), Felx), - it is .

evident that the integral on the right is

L ¥

Fi(x)"i" O x ﬁg(x)-}- Ot @(x)_i_ Cyt ooy .“': n.‘:

or Fix)+ FloL - +C, ",\ A1)
where C is C,+ Cy+ Cy, and is therefore arbltrary The

intugral on the left is the same quantity (I),Qf@’f the differ- .

ential of {1} is (§ 26), ’\'\
A F () Fyx) -+ C)= dFl(”)i AF() -+
= f(x)dx + f(x)dx =t =r(/ @) £ fl5)

O

02. ExaMmpLrs. N
1. Intcgrate (1 + a4 b)x‘zgz’x. v
2. Integraie 22 dx + 9 a¥g t 5254,
3. Integrate (& + 2} 61“}.1: + BxS dxl 5
K\ Ans, (&+2)g-5€x5-+§x7+6'f-
4. 1 the velogity Bf a body increases with the time according to the
formula %_ kta) \ﬁj;d the formula for the distance traversed.

i H ﬁr does jt move between the-instant when #is 3 seconds
and th '.uht:n £3s 5 seconds?
6»'}\md the expression for the area {corresponding to 5 in Fig. 10)

fQ{ Dh{.‘ curve whose equation is y = 522+ 2. Ans 53——}- zx+ C
a \

\™ %. What is the value of that area for the point where & 15 1?
Where & is 37 Where y is 227
8. What is the area besween the curve, the x-axis, and the twe
verficals erected at x = 2 and x =47 A4ur 100,
9. Solve the same problems for the curve y =a%4 145 for y=
a% for p— g ax.
10. Find the arca z, for y = a%; y=log {« -5); y=sinx

Ans. %-{—C‘; fx4 5)log(z+5)—x+0C3 —cosx L CL
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03. Just ag we may differentiate successively, so we may
integrate successively.
If we perform the integration

ff(x)a’r and obtain A(x), A

we may then take _ U
I’M“'
f f(a)dx and obtain A(®),
) » \ '"\.\V
and then ‘J Jix)dx and obtain ﬁ(x)& r
\/

efc. £

y O ~
Instead of wnting ffl(x}r!x, we mtay substitute for Ai(x
s N

its value f fl#)dx, and we shgfﬁ%ave

N
f hfy"{x)flx}dx,
N\
which, however, ji "ir}nall abbrevialed to a0 dx, OT
} {5\, ¥

even to fﬁ{?})dx?

o N 4
£

3
Similgtly, we may write
o N\ d

\f.fj‘f (-.%“) d dx dx, or_fj‘ff (x)dx®, etc.

i\ v
NS

:’:‘3 We may express the double, tnple, etc., definite integrals

$

\> also. The full form for the double definite integral would be

) 3

v

S o

which, however, may be condensed to

j‘:a-.ﬂkf () %
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04. To apply these ideas we recur to our old example of a falling
body, Suppose onr first knowledge is not 5= 16 22 nor z-;: 327, but

% = 32; that is, we simply know that the acceleration s a given con-

siant {32 velos per sec.), or to be more general let us call this con-

stant s 4 a5 A ¢
The gi tion, &2 k at D
@ given equation, = = g, means, as we know =g ot 7
ghven eqaton, 5= o =6 (3
45 3\
Fl =t 7%
(a':) o A\ )
LD
kW
whence, integrating, %:gﬁ‘—}- [ \."\\ {1}
1 . \
but this may be written & =gt dt + Cds, O
whence, integrating again,  ¢=}g* + ¥ ‘B’\ (2}

We have still to determine the arbitrary) oonstants Cand &, If the
distance s is measured from the startmg }mmt, then s and ¢ vamish
simultancously. Substituting zero fov .them both in (2), we obtain

K' *:_co '

It remains to determine £L “" N

‘'n o this we take equation (1} and suppose the body falls, not
from rest, but with an me welocity of « feet per second; then when

1

o5
¢ i3 2ero, _.r’ is #, ,{ 3

and {1} then rcdu%s\\

’“) w=a+ or C=1
Substlmmﬁ’ ¢ = and & = o in equation (2), we have
’\s 7 s %gtl +
the\&e.weral equation of falling bodies,
,"3. OR”. The process which we have followed out in detail from the

”\' equation

{
™ & _
\ PR
may be condensed as follows:

- feug S

:j(gt—i- oydr
=1}g‘fz+Cf+K
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00. The simple transcendental integrals are obtained as follows :
p .
Since  d(sina}= cos.x ¥, then j'cosxdx —sinx 4+ C.

Since o(cos x) = — sin x &, then j —sinxdy =cosx +{,

A
whence sin(x)dx == ¢cosx — = —cosx + ¢\
: A\
for ¢ is perfectly arbityary. ) % ‘TJ
. = Logadx faxLog adr '\“‘,
Since = then =t .
! o) Loge ' Loge +§
whence fr;*dx: 2" Loge + G \\:\'
Loga \\
ax ’\\I
Also jw de= 24 G .\*{,
. og & ~
Since 4 are sinx :—{fx — then = N —arcsing + £,
I — at Vi — a?
Since darctanx: ir e “"3‘ dx _arctanx—i— [
. I "’ﬁ N
. AN dr
Since dlogx = -—..— "thm‘l j‘ =logx+ C
x

& logx + lc-gﬁ’_ log (Ax}
wr Cand K are \\ﬁq\fy arbitrary,

97. We¢ 1}’m’y summarize the formule for integration which
have b'\eiens given :

$

%ﬁ\,{ fa dx = ax+C,

W\ ax™t!
Qe f(zx" dx = + € {when # is not =—1}-

O\ n+1

\W .

/ fax—l dv=alogax +C,
. ka” Loge
féﬂ dx = _Lag_a_ + o
ka®
= + C,s
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J}m=f+q
dx
== ar¢ tan C,
f1+x2 ar .x+ .
de =arcsinx 4 C, SO\
— &\
R\
. . ’\"}
fsmx dx =—cosx -+ €, . !
\ p ¢

¥ 4
. &
fcosx dx =sinx + C. \."\\
N

98. Treatises on the integral calentus a.rg:i’:!}d]y ery bulky, be.
cause they are occupied with the delermindbion of special integrals,

both definite and indefinite, and with §péaial devices for obtaining

them. In this little book, which is davobed to only the most general
and fundamenta] principles, we may, ﬁﬁy close our discussion at this
point,  Practically, even a(lvanqéd. students of the Calculus usually
depend on tables of integrals. *'Iihe reader is referred to B, O. Pierce’s
“Short Talie of lntegrals, " “Completer tables occupy large quarto
volumes,  An absolutely complete table does not exist, for there are
maltitudes of integra,k:?\;hlch have never yet been solved.

09. We may, however, point out one tool for integrating
already in {He Teader’s possession.
Suppq\ée.‘we have to integrate
\"\‘ ) x (47 4 2)%dx,
Q‘hls may evidently be put in. the form

¢ \x{ (x® 4 2% dx,
\ - ' L&+ 2 22 dx,
or 1 (2 + 2y’ (%),
or §+ 2+ 2),

and in this form it is easily integrated.
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For, putting # = x* + 2, we have

L4 du,
the integral of which is

ut
=4
8+ ;

(a2 2 ” \
ar __._g_.._ + C' (\\

3

This device consists in changing the variabley; %\t\t}ng rid
of dx, and obt'unmg instead a (llﬁferentla\ﬁﬁf\%me other
variable, #, in terms of which the whole &@ ssion tay be

written. N\
4 t'\'
N
100, ExavrLes. N X V}
1 (‘\} ey
1, j‘xi dr="7 .‘:ﬁ; j‘__ o
N Vi
a.- AN 2
2. j Vixde=7 g:\ N Aws, 73 Vit 1 bat,
Ve N X
3. a—({{:z’ Amns. ’\l 7. 5(1_—1—_.::
x# SN Bt
¢ &O 8 z_b_x a’x
4, j‘iﬁ= 2 — bt
(i — x% \
& o} e/ . 9 5‘({; + 3;\2)9 Efx’

27 7

Ans. ddx ;e plo S
3

o
%
%
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APPENDIX
1 r:\“\’
FUNCTIONS QF MORE THAN ONE VARIAEBLE NS ©
"4

 {
Ny

I0I. We have had to do hitherto with functiqn;?’ Bﬁonly
one variable, such as »* 4 2x+ 3. But ‘th”‘s’\mﬁgnitude
4 2 xy .3 4%, for instance, is dependent forits value on
#1z0 variables, 2 and ¥ ; f.e. is a fonction <{f;x and 7.

The relation 5=4°+ 2y + 3 "ej'} more. generally,
s = F(x, y), states that 7 is a funchioh of & and y; that is,
that a change either in x or » prédnf:es a change in .

ol

Thus, the speed of a sailing ‘;eﬁsit;l“is a function of the strength of
the wind and the angle at w’tlich'.;aﬁe sails to the wind.

The force which produces ,ﬁhes is a function of the earth’s distance
from the moon and its distance from the sun.

The price of stocksJs @ function of the rate of dividends and of the

rate of interest. € '\"'

Similarly, % = F(w, ¥, 7) expresses the fact that = de-
pends du') ¥, and 2, and so on for any number of variables.

) ‘\;} {l;e force which guides the moon is a function of its distance
| W the earth, its distance from the sun, and the angle hetween the
.'\(l}rections of thest two distances.
88 The price of a Turkish rug is = function of the prices of its constitu-
,\ W, ; ents, the cost of transportation, the rate of taxiff, ete.
4 If for @ = F(x, », #), the condition of some special
problem should require 2 to remain constant, the function

may be written as w = (¥, ) ; and if y is also constant, as

0 = Y{x).

‘
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Thus, the speed of a sailing vessel is = function of her angle to the
wind, if the strength of the wind remain constant, ’

The price of woollen cloth is a function of the price of wool, if the
cost of labor, etc,, remain constant,

102. Since the terms of an equation can be transposed,\:\
it is always possible to gather them all on the left side, thys *
reducing the right side to zero. y=+2"+1 is thq;gaﬁ‘ne
equation as 3*—x* — 1 =0, The left’ member ig\here a
function of x and y. And in general it is evideft'that any
relation between two variables y = 7 (o} can'bereduced to
the form ¢(x, y)=0. When expressed in the first form, »
is called an explicst function of x, In‘ghe latter it is an
implicit function of x. ,\

In like manner, any relation z={A¥, ) can be reduced
to the form ¢(x, y, 2)=o0; any:’relation w=4F(x, 3, 5 0

‘f*(x, KRN w) =0, and so 01?;:5:

103. We have seen. that d(x, y)=0 or y=F(x) can
always be representclsf by a curve with & and » as the two
cobrdinates. S%'\E‘tlsf}, #(x, 3, 5)=o0 or 3= F(x, ) can
always be represénted by a surface with #, y,and z as the

© three cobrdinates.

Draw ¢Hre€ axes at tight angles to each other, such as the
three.e@és of a room, meeting at a corner on the floor, the
x-&s@s. eing directed, say, easterly, the y-axis northerly, and
_the ¥-axis upward.

NS “To represent  z=at4 2y 4 348

‘\
/' let & have any particular value, such as 2,and y, 1.

Then z=2"f2xX2X14 3% =11

Find the point in the room which is 2 units east of the
corner, r unit north of it, and 11 units above it. This is



S
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one point of the required surface. By taking all possible
combinations of values of x and y, and finding the result-
ing values of z, we can find 2% points on the surface,

104. When g== F(x, ¥), we may vary x by Ax, while y
remains constand, and thus cause in 2 an increment denote\ﬂ N
by Az. The ultimate ratio of Az to Ax is expressed by, W/

8 NG
'_K or GM, %7 2
dx dx w7
and is called the partial derivative of ¥ (x, %) with respect

W

to & :
L f?F (%, 1) &
dy ay N w’
is the partial derivative with respect to ¥; f.e the derivative
obtained by keeping x consta‘at during the differeatiation.
Observe that the symbo} '8, denoting partm! differentia-
tion, is not identical with .
m\

105. The getxﬁetncﬂ interpretation of these partial deriv-
atives can b made evident. If on the surfice, z =F(x, ¥),
say the ‘:urface of a stiff felt hat, we take any given point .2
and pasxthrough it a vertical east and west plane, the plane

n\:hrface intersect in a curve passing through 2 'The
wiigential slope of this curve at P {or, as we may call it, the

Similarly, -

~\ SEw slope of the surface itself }is éf- For the codrdi-
x

Nites of P are x, ¥, 3, and those of a neighboring point Q@
on the curve (and therefore on the surface) are x 4 Ax, 3,
. ~~ Az, where Ax is the difference between the x's of 2
14 Q,and As the difference between the #’s ; .the 3's are by
1:7pothesis the same. The siope of the line joining Pand Q1is
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, and its'limiLing value, lim Az ar %, is the slope of
Ax dx
the curve at J” (sce § 12); 1.2 the E-W slope of the sur-

face.

As

N

971% %) i the north and south slope of (")*

Similarly, g, or ,
d dy

the surface, O

These two primary slopes of the surface can bey ré’;}re—
sented by placing two straight wires or knittingPueedles
tangent to the hat at the point /7 one in an<BsW vertical
plane and the other in a N-S vertical plane. !

If we take eny neighboring point R pa\the surface, its
cobrdinates are x + Ax, y + Ay, z 4+ A%, Where the A’s are
the differences of codrdinates of £ /A

Join P and &. Then i—z représents, not the true slope
Ax UWN

of the line AR, but its cas? @{z}z";zéreft slope {(not, of course, the
east and west slope of the'surface itselfy. Tt is the rate the
line ascends in compaqson, not with its true horizontal prog-
Tess, but with its, ea&&g}mrd progress. A climber ascending a
northeasterly ridée may he rising 5 feet for every 3 of hori-
zontal progreds Yhut yet rising 5 feet for every 2 of eastward
progress. ‘\]Vé have to do with the latter rate, not the former,

So;a{?e’o\ig is the nortk and sonth slope of the same line /2R,

\'&{v let & approach 2 (along any roufe whalever upon

Jthe surface) until it coincides. The line PR approaches a
»\:\ Iimiting position which is a new tangent to the surface (a
\/ tangent to that curve in the surfacc which &£ traced in ap-

proaching 2). The E-Wslope of this tangent is lim %,
gz . &z

called ==, and its N-3 slope, —.
dx P

Representing this tangent by a third wire, we have threc
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tangent wires through 7, one in an E-W vertical plane, a
second in a N-§ vertical plane, and the third, any other
tangent. The first has no N-8 slope; its 1-W slope is
dy : Oz

%%, The second has no E-W slope; its N-8 slope is - "

duy - i o dy N

The third has both kinds of slope, viz., % and Z. A -
dx &y e\ \

106. As will be %hown, the relation between these VB‘I'IC'MS

derivatives is \ Y

do = d+ajdy, PR

which may be thrown into the forms: A\

s __ 0z 9z , 0z oz a’)\]*
dx  ox By N\

or 4 d - . (2)
gz __ 9% o r?x _{_iz

&y ax “ (z’y dy )
The form (1) has the’ gredt advantage of symmetry It

seems, however, toxm}wal the existence of {a{’y or =— o whmh

arc brought oui\\q (z) These last two magnitudes require

merely a word. of explanation. ::’12 is not an upward slope
2

at all, a§ 1}. does not involve the vertical z Tt is the incli-
natum‘of the third wire across the floor, the rate at which
m@tﬁrmg point on it proceeds north in relation to its east-
rd progress.
¢“\ .
\3”' 107. The proof of the formula stated in the lgst section is as
follows : *
* In order to master and remember this proof, the student is advised
to construct for it some actual physical model. He will then find it
extremely simple,
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We first assumc that all wices throngh 2 tangent to the sucface lic
in one and the same plane called the famgens plane. This assumption
is analogous to that in § 14, that the progressive and regressive tan
gents coincide. There is an exceplion if the surface has an edgo or
wrinkle at the given point,

Let us take in this plane the three tangent wices above considered, \°
viz. the two primary wires (in vertical planes running E-W and N- s \“,\
respectively) and the wire obtained as the limiting position of PQ”
Take a point ¢/ on this third or * general ” wire, having c,uordm;x‘tn
x4 alr, y + aly, 24 A’ (The primes serve to dxstmgmsﬁ, @' oun
the tangent plane from {2 on the surface.} ¢

Throngh ¢/ pass two vertical planes running E-W dnl ’\r 3 respec-
tively, We alreadj,r have two such plancs through %" These four
vertical planes cut the tangent planc in a parallelu y of which £#¢
is a diagonal and the “primary wires” are the\vm sides meeting at
#. Denote the two vertices as yet unletterdl Sy A and &, the former
being in the E-W and the latter in the N- S primary wire.

A's heing the differcnce in level of f”and {f is the sum of the dif-
ference in level of 2 and 4/ and of )Y‘and ', just as the dillerence in
level between Mount Blanc and.the sea i3 the surm of the elevation
of Lake Lucerne above the sea “mnd of Mount Blanc abave the Lake.
(It does not matter whether 1% or is not intermediate in level between
Fand (¥, for if not, oney @fithe heights considered becomes negative. h]

Now the d.lfferenc\n\l'evel of Pand /7 is

> 65 A'x,

y N dx
e A/
for the diﬁ'er:eqce of level, %, between any two points, as 3 and &

:~\1.

r ) a
¥iG. 11,

(Iig. 11} is the product of the wope of MA by the horizontal interval,

@, between them (since: slope of MW :'E, whence &=z X slope of
73
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MN). gz— is known to bz the slope of P, and alr is the E-W
=

interval between P and {¥, and therefore also the E-W interval (or
in this case the horizontal interval) between 2 and & {since & and ¢
are in the same N-5 plane).

N

Again the difference in level between Fand @' is o Y
¢\
Oz, e\ T
ay aly. D

For g— being the slope of PX, is also the slope of HQ" pa?allei to

i
PK, and A'y, being the N-S interval between £ and Q’\s also the
N-5 (and in this case horizontal) interval betweert A and ' (since

H and P arc in the same E-W plane)}. O
Thercfore, AN
&
a*z—g_- alx 4+ P (ry!
NN
which is the prototype of the desired result 01).
. . Az Jes " Aly (z)!
This may be written N dx" ay v

t \

Now -é—r-"f is the E—W slnpe of the general tangent™ wire PQL
aly Af

" But we have secn that ;f {Ealso this slope. Again, IZ is the inclina-

tion of this same wu‘& deross the floor (the rate at which a point
moving on the v\h\\nwcecds sarthward relatively to its eastward

progress). Bnf\ so also is —ﬁ—’ (§ 106). Substituting therefore these
s %

values forthe primed expressions, we have

% ds_ 83y 2
) .%”' dx  dx  dy dr
Swhich may be thrown into the form
N .
\\. “' &= 02 dx+igdy.
ox oy

. z
In this, 2 is called the fetd/ differential of &, while giafx and g}: dy

ave its pardal diferentials. )
It is evident that we should reach the same result if in the preced-

ing reasoning we bad emplo}red & in the way we did employ &, and
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vice wevsay also that we conld have divided (1) hy A'y instead ol
by Alx.

108. The formula (1) (§ 106), or its two alternative
forms (2), enable us to ascertain the direction of any tan-{ )’
gent line to a surface. 'S\l

 §

« N\

Thus, let the sutface be ,‘,}‘

- )
z=at+ 2xy+ 38, D ’

and let it be required to determine any tangent line at\thcﬁsomt whase

x and y are I and X respectively; g is evidently 6. N4
1. The primary E-W tangent wire at this pojnt has an E-W slope

L + 2y = 4, found by differentiating th{ @bove cquation treat-

dx \
ing p as constant, and has no N-5 slope. AN/

2. The primary N-S tangent wire, at ‘s point has a N-5 slope

g——z.r—f— 6y = 8, and has no E- Wslope
1y

.\‘

8, The tangent wire in th,e:y&rtmal plane running northeast and
sonthwest has an E-W slope of

@ _g 02 ay
{\,za’x dx vy dx
> @
N = 5
O 4+ o
.’\": =4+8xr1=12
and a N—-S;slépe of
."\x:‘ @zsz_ . @_‘_az
A\ @ dx dy dy
”:\ =4x1+8=12

»\ 34, The tangent wire in the vertical plane running northwest and
\)»' southeast has the two slopes

4+8(—1=—4
arnel A{—i}+ 8= 4.

8, The tangent wire in the vertical plane cutting between north and
east 20 as to be advancing noith twice as fast a5 east

(z’.z. so that & = 2),
ax

v



APPENDIX ‘ 81

492, 35 4
de dx  dy o
=418 x2=20

de_dz dx de

. has slopes of

and =0 o= .
& dx ay  ay N
=4 X % +8=10, e
and so on for any tangent wire whatcver. N ~\f\\~\.
. O

109. EXAMLLFS. N

1. Find the stopes of the five sorts ahove indicated 0f the same
surface at the point for which # =3 and y =2, N

2. At the puint where ¥ =— 1, y=—1I )
3. At the point where ¥ =0, ¥y =10 .'\\o;

{

4, Hor the surface =3+ a4 m .%@‘-}—y+y2+y3 at the
& il

point ¥ =0, ¥ =1
5. Tor the surface

£ )
s W

5= 2ty <23+ 3

at thepoint x=2, ¥ =3 _ON

6. On the same surface atithe same point, what arc the E-W and
N-5 slopes of the lang:&gt line which progresses northward 3 times
as fast as castward ? 72N imes ? 3L times ?

7. Answer th\?m—?fl;: questions for 2= log v + 3=+ 38

110. ‘Qﬂgeﬁ we have a function of more than two vari-
ables, Asw = F(x, y, 7), there is no mode of geometrical
int;m&iiretation corresponding to the curve for y = I"(x) and

) SMCE for = F(x, y) {untess, indecd, we posit a « fourth
e\ dimension,” and speak of a ““ curved space ” of three dimen-
zi\;' sions whose cobrdinates are x, ¥, 2 @ ).

It may be shown, however, in a manner strictly analogous

_ to the process of § 107, but without employing the geomet-
rical image, that

dx

de 3.
ay dz ¥
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This differential equation is elliptical for the three equations
obtained by dividing through by Zx, v, and 4z

The theorem and its proof are extensible o any number
of variables.

IIT. A very important application of the principle qf,’

\ partial derivatives occurs when we have but two variables,

i o,

but y is an implicit function of x; 7., when i, 7% o

We are enabled to obtain the derivative ? wir,]ioﬁf being
e N5

obliged first to transform the implicit fuabfien intc the
explicit form y=2F{x). N

&
Thus, if 2 4+ 32 = 25, we may find @ witifcﬁt changing the equa-
tion to the form » = . V25 — 22 4% ONN

N/
.

I12. We know from § 106, (2’) that if z = ¢(x, y), then
a0, 3R 19(x,0)
dx N T oy dx
which may also be,tﬁ}}ten in two other forms, as given in
§ 1006. O
When z is ;girjg», as in the case now being considered, then
gﬁ is also ,ze}*o':(§ 27, end). Making this substitution in the
& e/ .
above:@ation, we obtain
Q7 oz, 9)
A\ I Sy dax

\ 3 dx _a—‘ﬁ(x; L)

dy
Inwords: 7o find the differential guotient of vy with re-
spect io x when the functional dependence between x and ¥is
expressed tn the implicit form $(x, VY=o, differentiate the
Junction G(x, y) with respect o x, trealing y as constant,
and then again with respect fo v, treafing x as comstant

N

n\.
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Take the partial derivative found from the Jforst differensia-
tion, divide it by that found from the second, and prefix the
MINAS Sign.

O

Thus, if 22+ 2= 25, or 22438 —25=0, we may find D s
follows : @x A\ ¢
The partial derivative of 22 + 3% — 35 with respect to x is 2 x,’.a'gh"y
with respect to 9, 2. Henge . \>
d__3x__x N
ax 2y ¥ £

This vesult is expressed in terms of both = ancl\j&}ut it may be
transformed s as to involve but ane variable, Thg&ubstitute for 3 its

value as obfained from 22 + 2 =25, vin. L a2 Then

P 4

s e\

T v
adx :}_‘\/23"_,”
s TN\

a result identical with that ubtained:Jﬁx differentiating the explicit form
N

*d —

y?%‘\/ 25 — 22

<

P

I13. Examrrzs, Q
1. Fmg%’ it xy=1.
'
& Wind '—Q, ifza’4+ 392 ~4=0.
AN . dx _

L ?
o\ d
D73 Fina f; i axly 4 h2% = o,

\‘:\f’
O 4 Find 2, g ¥dX b b
' x—y o &

P LI
6. Find &, if ==
in = if cos{ay)==x

6. Find %* if log(ay®) + 2% 4 3% 4+ zay + a =

7. Show § 112 geometrically.
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114. Functions of many variables are pecutiarly appli-
cable in economic theory, though as yet they have been
very little employed.* Many fallacies have been committed
from lack of this more general conception of functicnal de- A

pendence, and from the tacit assumption that mere cm;;eé\\“I.‘

are capable of delineating any sort of quantitative relation
. This is an error only one degree less flagrant than ti}@’\E:‘r%,ors
of those whose sole mathematical idea is that o ‘the con-
stant quantity, R \:\
* Bee, however, Edgeworth’s Afathematical &%&fﬂ, 1881; fhe
asthor’s Matkematical Investizations in the J‘g&:ry of Value and
Prices, 1802; and Pareto’s Comsrs & bconamig Politigne, 1896-7.
N \’
\J *

%
o~ SN
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